Advertisement

A Model for Providing Affective Feedback

  • Samantha Jiménez
  • Reyes Juárez-Ramírez
  • Víctor H. Castillo
  • Juan José Tapia Armenta
Chapter
Part of the Human–Computer Interaction Series book series (HCIS)

Abstract

A model is a physical, conceptual, or mathematical representation of a real phenomenon. Scientific models are used to explain and predict the behavior of real objects or systems and are applied in a variety of scientific disciplines (Sampieri et al. in Metodologia de la Investigación. McGraw-Hill Inc. 2006, [1]). The objectives of a model include three aspects: (1) to facilitate understanding by eliminating unnecessary components; (2) to aid in decision-making by simulating what-if scenarios; and (3) founded on past observations, to explain, control, and predict events.

References

  1. 1.
    Sampieri, R.H., Collado, C.F., Lucio, P.B.: Metodologia de la Investigación, 4th edn. McGraw-Hill Inc. (2006)Google Scholar
  2. 2.
    Barchini, G.E., Álvarez, M.M.: Dimensions and indicators of the ontology quality 7(1) (2010)Google Scholar
  3. 3.
    Fernández-López, M., Gómez-Pérez, A., Juristo, N.: Methontology: from ontological art towards ontological engineering. Assessment SS-97-06, 33–40 (1997).  https://doi.org/10.1109/AXMEDIS.2007.19
  4. 4.
    García, B.: Las Dimensiones Afectivas de La Docencia. Revista Digital Universitaria 10, 1–14 (2009)Google Scholar
  5. 5.
    Kopp, K., Britt, M., Millis, K., Graesser, A.: Improving the efficiency of dialogue in tutoring. Learn. Instr. 22(5), 320–330 (2012).  https://doi.org/10.1016/j.learninstruc.2011.12.002CrossRefGoogle Scholar
  6. 6.
    Rica, U.D.C., Pedro, S., Oca, M.D., Rica, C.: The emotional intelligence, its importance in the learning process. Educación 36(1), 1–24 (2012)Google Scholar
  7. 7.
    Armour, W.: Emotional intelligence, student engagement, teaching practice, employability, ethics curriculum. Invest. Univ. Teach. Learn. 8(2004), 4–10 (2012)Google Scholar
  8. 8.
    Angelaki, C., Mavroidis, I.: Communication and social presence: the impact on adult learners’ emotions in distance learning. Eur. J. Open Distance E-learn. 16(1), 78–93 (2013)Google Scholar
  9. 9.
    Ibarra, L.M.: Aprende fácilmente con tus imágenes, sonidos y sensaciones, 6ta edn. Garnik Ediciones, México (2011). www.garnik.com
  10. 10.
    Tartir, S., Arpinar, I., Moore, M., Sheth, a., Aleman-Meza, B.: OntoQA: metric-based ontology quality analysis. In: IEEE Workshop on Knowledge Acquisition from Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge Sources, pp. 45–53 (2005). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.2087
  11. 11.
    Zemmouchi-ghomari, L., Leila, Z.G., Université de M’hamed Bougara Boumerdes, Bouguerra, M.: Position paper: a new approach for human assessment of ontologies, October 2015Google Scholar
  12. 12.
    Creswell, J.: Qualitative Inquiry and Research Design: Choosing Among Five Traditions. Sage Publication, Thousand Oaks (1998)Google Scholar
  13. 13.
    Yin, R.K.: Qualitative Research from Start to Finish. The Guilford Press, New York and London (2011).  https://doi.org/10.1007/s13398-014-0173-7.2
  14. 14.
    Samei, B., Li, H., Keshtkar, F., Rus, V., Graesser, A.C.: Context-Based Speech Act Classification in Intelligent Tutoring Systems. Intelligent Tutoring Systems, pp. 236–241 (2014)CrossRefGoogle Scholar
  15. 15.
    Rus, V., Moldovan, C., Niraula, N., Graesser, A.: Automated discovery of speech act categories in educational games. In: Proceedings of International Conference on Educational Data Mining, pp. 25–32 (2012)Google Scholar
  16. 16.
    Vail, A.K., Boyer, K.E.: Identifying effective moves in tutoring: on the refinement of dialogue act annotation schemes. In: Proceedings of the 12th International Conference on Intelligent Tutoring Systems (ITS), pp. 199–209 (2014).  https://doi.org/10.1007/978-3-319-07221-0-24, http://research.csc.ncsu.edu/learndialogue/pdf/LearnDialogue-Vail-ITS-2014.pdfCrossRefGoogle Scholar
  17. 17.
    Moldovan, C., Rus, V., Graesser, A.C.: Automated speech act classification for online chat. CEUR Workshop Proc. 710, 23–29 (2011). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.231.5461ik
  18. 18.
    Marineau, J., Wiemer-Hastings, P., Harter, D., Olde, B., Chipman, P., Karnavat, A., Pomeroy, V., Rajan, S., Graesser, A.: Classification of speech acts in tutorial dialog. In: Proceedings of the Workshop on Modeling Human Teaching Tactics and Strategies at the Intelligent Tutoring Systems 2000 Conference, pp. 65–71 (2000)Google Scholar
  19. 19.
    Syrdal, A.K., Conkie, A., Kim, Y.J., Beutnagel, M., Park, F.: Speech acts and dialog TTS. In: The Seventh ISCA Tutorial and Research Workshop on Speech Synthesis, pp. 179–183 (2010)Google Scholar
  20. 20.
    Gurovich, E.V.: Introduccion a la Teoria de la Computacion. Prensas de ciencias. UNAM, Facultad de Ciencias, Mexico (2008). https://books.google.com.mx/books?id=NXQE8NJw9d4C
  21. 21.
    Geertzen, J.: Dialogue act prediction using stochastic context-free grammar induction. In: Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Grammatical Inference—CLAGI 2009, pp. 7–15, March 2009.  https://doi.org/10.3115/1705475.1705478, http://portal.acm.org/citation.cfm?doid=1705475.1705478

Copyright information

© The Author(s), under exclusive license to Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Samantha Jiménez
    • 1
  • Reyes Juárez-Ramírez
    • 1
  • Víctor H. Castillo
    • 2
  • Juan José Tapia Armenta
    • 3
  1. 1.Universidad Autónoma de Baja CaliforniaTijuanaMexico
  2. 2.Universidad de ColimaColimaMexico
  3. 3.CITEDIInstituto Politécnico NacionalTijuanaMexico

Personalised recommendations