Skip to main content

Kinematic Analysis of a Novel Parallel 2SPRR+1U Ankle Mechanism in Humanoid Robot

  • Conference paper
  • First Online:
Advances in Robot Kinematics 2018 (ARK 2018)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 8))

Included in the following conference series:

Abstract

Parallel mechanisms are increasingly being used as modular subsystems in various robots and man-machine interfaces for their good stiffness, payload to weight ratio and dynamic properties. This paper presents the kinematic analysis of a novel parallel mechanism of type 2SPRR+1U for application as a humanoid ankle joint with two degrees of freedom. Tools from computational algebraic geometry are used to provide solutions to the forward and inverse kinematics problems. These are further used to characterize the workspace of this mechanism and provide description of its singularity curves. The kinematic analysis demonstrates that the chosen design can provide human ankle like workspace and good torque transmission capability without suffering from any singularities which makes it an ideal candidate for ankle joint module in humanoid robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartsch, S., Manz, M., Kampmann, P., Dettmann, A., Hanff, H., Langosz, M., von Szadkowski, K., Hilljegerdes, J., Simnofske, M., Kloss, P., Meder, M., Kirchner, F.: Development and control of the multi-legged robot mantis. In: International Symposium on Robotics (2016)

    Google Scholar 

  2. Kirchner, E.A., Will, N., Simnofske, M., Benitez, L.M.V., Bongardt, B., Krell, M.M., Kumar, S., Mallwitz, M., Seeland, A., Tabie, M., Wöhrle, H., Yüksel, M., Heß, A., Buschfort, R., Kirchner, F.: Recupera-reha: exoskeleton technology with integrated biosignal analysis for sensorimotor rehabilitation. In: Transdisziplinäre Konferenz SmartASSIST, pp. 504–517 (2016)

    Google Scholar 

  3. Kuehn, D., Bernhard, F., Burchardt, A., Schilling, M., Stark, T., Zenzes, M., Kirchner, F.: Distributed computation in a quadrupedal robotic system. Int. J. Adv. Robot. Syst. 11(7), 110 (2014)

    Article  Google Scholar 

  4. Kumar, S., Bongardt, B., Simnofske, M., Kirchner, F.: Design and kinematic analysis of the novel almost spherical parallel mechanism active ankle. J. Intell. Robot. Syst. 1–23 (2018). https://doi.org/10.1007/s10846-018-0792-x

  5. Kumar, S., Simnofske, M., Bongardt, B., Mueller, A., Kirchner, F.: Integrating mimic joints into dynamics algorithms – exemplified by the hybrid recupera exoskeleton. In: Advances in Robotics (AIR 2017), 28 June–2 July, New Delhi, India. ACM-ICPS (2017)

    Google Scholar 

  6. Lohmeier, S., Buschmann, T., Schwienbacher, M., Ulbrich, H., Pfeiffer, F.: Leg design for a humanoid walking robot. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots, pp. 536–541 (2006)

    Google Scholar 

  7. Serracín, J., Puglisi, L., Saltaren, R., Ejarque, G., Sabater-Navarro, J., Aracil, R.: Kinematic analysis of a novel 2-d.o.f. orientation device. Robot. Auton. Syst. 60(6), 852–861 (2012)

    Article  Google Scholar 

  8. Zoss, A.B., Kazerooni, H., Chu, A.: Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans. Mech. 11(2), 128–138 (2006)

    Article  Google Scholar 

Download references

Acknowledgement

The work presented in this paper was performed within the project TransFIT, funded by the German Aerospace Center (DLR) with federal funds from the Federal Ministry for Economic Affairs and Energy (BMWi) (Grant Nos. 50RA1701, 50RA1702 and 50RA1703). The fifth author acknowledges that this work has been partially supported by the Austrian COMET-K2 program of the Linz Center of Mechatronics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, S., Nayak, A., Peters, H., Schulz, C., Müller, A., Kirchner, F. (2019). Kinematic Analysis of a Novel Parallel 2SPRR+1U Ankle Mechanism in Humanoid Robot. In: Lenarcic, J., Parenti-Castelli, V. (eds) Advances in Robot Kinematics 2018. ARK 2018. Springer Proceedings in Advanced Robotics, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-93188-3_49

Download citation

Publish with us

Policies and ethics