Skip to main content

Ore-Forming Processes in the Aguablanca Ore Deposit

  • Chapter
  • First Online:
Book cover The Ni-Cu-(PGE) Aguablanca Ore Deposit (SW Spain)

Part of the book series: SpringerBriefs in World Mineral Deposits ((BRIEFSWMD))

  • 232 Accesses

Abstract

The high sulfur content and the low concentrations of PGE (0.47 g/t, evaluation by Río Narcea Recursos, SA) of the Aguablanca mineralization indicate that this deposit belongs, according to the classification of Naldrett (Magmatic sulfide deposit: Geology, geochemistry and exploration. Springer, Berlin, p 728, 2004), to those magmatic sulfide deposits valuable due to their primary Ni and Cu contents with PGE recovered as by-products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnes S-J, Ripley EM (2016) Highly siderophile and strongly chalcophile elements in magmatic ore deposits. Rev Mineral Geochem 81:725–774

    Article  Google Scholar 

  • Barnes S-J, Boyd R, Kornelliussen A, Nilssen LP, Often M, Pedersen RB, Robins B (1987) The use of noble and base metal ratios in the interpretation of ultramafic and mafic rocks, examples from Norway. Geoplatinum 87 Symposium Open University, Milton Keynes, April

    Google Scholar 

  • Barnes S-J, Makovicky E, Karup-Moller S, Makovicky M, Rose-Hanson J (1997) Partition coefficients for Ni, Cu, Pd, Pt, Rh and Ir between monosulfide solid solution and sulfide liquid and the implications for the formation of compositionally zoned Ni–Cu sulfide bodies by fractional crystallization of sulfide liquid. Can J Earth Sci 34:366–374

    Article  Google Scholar 

  • Barnes S-J, Melezhik VA, Sokolov SV (2001) The composition and mode of formation of the Pechenga nickel deposits, Kola Peninsula, northwestern Russia. Can Mineral 39:447–471

    Article  Google Scholar 

  • Barnes S-J, Cox RA, Zientek ML (2006) Platinum-group element, gold, silver and base metal distribution in compositionally zoned sulfide droplets from the Medvezky Creek Mine, Norilsk, Russia. Contrib Mineral Petrol 152:187–200

    Article  Google Scholar 

  • Barnes S-J, Prichard HM, Cox RA, Fisher PC, Godel B (2008) The location of the chalcophile and siderophile elements in platinum group element ore deposits (a textural, microbeam and whole rock geochemical study): implications for the formation of the deposits. Chem Geol 248:295–317

    Article  Google Scholar 

  • Barnes SJ, Holwell DA, LeVaillant M (2017a) Magmatic sulfide ore deposits. Elements 13:89–95

    Article  Google Scholar 

  • Barnes SJ, Le Vaillant M, Lightfoot PC (2017b) Textural development in sulfide-matrix ore breccias in the Voisey’s Bay Ni–Cu–Co deposit, Labrador, Canada. Ore Geol Rev 90:414–438

    Article  Google Scholar 

  • Barnes SJ, Piña R, Le Vaillant M (2018) Textural development in sulfide-matrix ore breccias in the Aguablanca Ni–Cu deposit, Spain, revealed by X-ray fluorescence microscopy. Ore Geol Rev 95: 849–862

    Article  Google Scholar 

  • Cafagna F, Jugo PJ (2016) An experimental study on the geochemical behaviour of highly siderophile elements (HSE) and metalloids (As, Se, Sb, Te, Bi) in a mss-iss-pyrite system at 650 °C: A possible magmatic origin for Co-HSE-bearing pyrite and the role of metalloid-rich phases in the fractionation of HSE. Geochim Cosmochim Acta 178: 233–258

    Article  Google Scholar 

  • Campbell IH, Naldrett AJ (1979) The influence of silicate: sulphide ratios on the geochemistry of magmatic sulphides. Econ Geol 74:503–1505

    Article  Google Scholar 

  • Casquet C, Eguiluz L, Galindo C, Tornos F, Velasco F (1998) The Aguablanca Cu–Ni–(PGE) intraplutonic ore deposit (Extremadura, Spain). Isotope (Sr, Nd, S) constraints on the source and evolution of magmas and sulfides. Geogaceta 24:71–74

    Google Scholar 

  • Cowden A, Donaldson MJ, Naldrett AJ, Campbell IH (1986) Platinum-group elements in the komatiite-hosted Fe–Ni–Cu sulfide deposits at Kambalda Western Australia. Econ Geol 81:1226–1235

    Article  Google Scholar 

  • Dare SAS, Barnes S-J, Prichard H (2010) The distribution of platinum group elements (PGE) and other chalcophile elements among sulfides from the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada, and the origin of palladium in pentlandite. Miner Deposita 45:765–793

    Article  Google Scholar 

  • Dare SAS, Barnes S-J, Prichard H, Fisher PC (2011) Chalcophile and platinum-group element (PGE) concentrations in the sulfide minerals from the McCreedy East deposit, Sudbury, Canada, and the origin of PGE in pyrite. Miner Deposita 46:381–407

    Article  Google Scholar 

  • Dobson DP, Crichton WA, Vocadlo L, Jones AP, Wang Y, Uchida T, Rivers M, Sutton S, Brodholt JP (2000) In situ measurement of viscosity of liquids in the Fe–FeS system at high pressures and temperatures. Am Mineral 85:1838–1842

    Article  Google Scholar 

  • Duran CJ, Barnes S-J, Corkery JT (2015) Chalcophile and platinum group element distribution in pyrites from the sulfide-rich pods of the Lac des Iles Pd deposits, Western Ontario, Canada: implications for post-cumulus re-equilibration of the ore and the use of pyrite composition exploration. J Geochem Explor 158:223–242

    Article  Google Scholar 

  • Duran CJ, Barnes S-J, Plese P, Kudrna Prasek M, Zientek ML, Pagé P (2017) Fractional crystallization-induced variations in sulfides from the Noril’sk-Talnakh mining district (polar Siberia, Russia). Ore Geol Rev 90:326–351

    Article  Google Scholar 

  • Dutrizac JE (1976) Reactions in cubanite and chalcopyrite. Can Mineral 14:172–181

    Google Scholar 

  • Ebel D, Naldrett AJ (1996) Experimental fractional crystallization of Cu- and Ni-bearing Fe-sulfide liquids. Econ Geol 91:607–621

    Article  Google Scholar 

  • Eckstrand OR, Hulbert LJ (1987) Selenium and the source of sulfur in magmatic nickel and platinum deposits. GAC-MAC Jt Annu Meet Program Abs 12:4

    Google Scholar 

  • Fleet ME, Chryssoulis SL, Stone WE, Weisener CG (1993) Partitioning of platinum-group elements and Au in the Fe–Ni–Cu–S system: experiments on the fractional crystallization of sulfide melt. Contrib Mineral Petrol 115:36–44

    Article  Google Scholar 

  • Godel B, Barnes SJ (2008) Platinum-group elements in sulfide minerals and the whole rocks of the J-M Reef (Stillwater Complex): implication for the formation of the reef. Chem Geol 248:272–294

    Article  Google Scholar 

  • Helmy HM, Ballhaus C, Berndt J, Bockrath C, Wohlgemuth-Ueewasser C (2007) Formation of Pt, Pd and Ni tellurides: experiments in sulphide-telluride systems. Contrib Mineral Petrol 153:577–591

    Article  Google Scholar 

  • Holwell DA, McDonald I (2007) Distribution of platinum-group elements in the Platreef at Overysel, northern Bushveld Complex: a combined PGM and LA-ICP-MS study. Contrib Mineral Petrol 154:171–190

    Article  Google Scholar 

  • Holwell DA, McDonald I (2010) A review of the behaviour of platinum group elements within natural magmatic sulfide ore systems: the importance of semimetals in governing partitioning behaviour. Platin Met Rev 54:26–36

    Article  Google Scholar 

  • Howard JH (1977) Geochemistry of selenium: formation of ferroselite and selenium behavior in the vicinity of oxidizing sulfide and uranium deposits. Geochim Cosmochim Acta 41:1665–1678

    Article  Google Scholar 

  • Keays RR (1995) The role of komatiitic and picritic magmatism and S-saturation in the formation of the ore deposits. Lithos 34:1–18

    Article  Google Scholar 

  • Keays RR, Lightfoot PC (2010) Crustal sulfur is required to form magmatic Ni–Cu sulfide deposits: Evidence from chalcophile element signatures of Siberian and Deccan Trap basalts. Miner Deposita 45:241–257

    Article  Google Scholar 

  • Kelly DP, Vaughan DJ (1983) Pyrrhotite–pentlandite ore textures: a mechanistic approach. Min Mag 47:453–463

    Article  Google Scholar 

  • Knight RD, Prichard HM, Filho CF (2017) Evidence for as contamination and the partitioning of Pd into pentlandite and platinum group elements into pyrite in the Fazenda Mirabela Intrusion, Brazil. Econ Geol 112:1889–1912

    Article  Google Scholar 

  • Kullerud G, Yund RA, Moh G (1969) Phase relations in the Fe–Ni–S, Cu–Fe–S and Cu–Ni–S systems. Econ Geol Monogr 4:323–343

    Google Scholar 

  • Lesher CM, Burnham OM (2001) Multicomponent elemental and isotopic mixing in Ni–Cu–(PGE) ores at Kambalda, western Australia. Can Mineral 39:421–446

    Article  Google Scholar 

  • Li C, Naldrett AJ (1993) Sulfide capacity of magma: a quantitative model in its application to the formation of sulfide ores at Sudbury, Ontario. Econ Geol 88:1253–1260

    Article  Google Scholar 

  • Li C, Barnes S-J, Makovicky E, Rose-Hansen J, Makovicky M (1996) Partitioning of Ni, Cu, Ir, Rh, Pt and Pd between monosulfide solid solution and sulfide liquid: effects of composition and temperature. Geochim Cosmochim Acta 60:1231–1238

    Article  Google Scholar 

  • Liu Y, Brenan J (2015) Partitioning of platinum-group elements (PGE) and chalcogens (Se, Te, As, Sb, Bi) between monosulfide-solid solution (MSS), intermediate solid solution (ISS) and sulfide liquid at controlled fO2–fS2 conditions. Geochim Cosmochim Acta 159:139–161

    Article  Google Scholar 

  • Maier WD, Barnes S-J (2010) The Kabanga Ni sulfide deposits, Tanzania: II. Chalcophile and sidérophile element geochemistry. Miner Deposita 45:443–460

    Article  Google Scholar 

  • Makovicky M, Makovicky E, Rose-Hansen J (1986) Experimental studies on the solubility and distribution of platinum group elements in base-metal sulfides in platinum deposits. In Gallagher MJ, Ixer RA, Neary CR, Prichard HM (eds) Metallogeny of basic and ultrabasic rocks, Institute of Mining and Metallurgical Special Publication, pp 415–426

    Google Scholar 

  • Mathur R, Tornos F, Barra F (2008) The Aguablanca Ni–Cu deposit: a Re-Os isotope study. Int Geol Rev 50:948–958

    Article  Google Scholar 

  • McBirney AR, Murase T (1984) Rheological properties of magmas. Annu Rev Earth Planet Sci 12:337–357

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McGoldrick PJ, Keays RR (1981) Precious and volatile metals in the perseverance nickel deposit gossan: implications for exploration in weathered terrains. Econ Geol 76:1752–1763

    Article  Google Scholar 

  • Mungall JE, Andrews R, Cabri LJ, Sylvester PJ, Tubrett M (2005) Partitioning of Cu, Ni, An, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities. Geochim Cosmochim Acta 69:4349–4360

    Article  Google Scholar 

  • Naldrett AJ (2004) Magmatic sulfide deposit: geology, geochemistry and exploration. Springer, Berlin, p 728

    Google Scholar 

  • Naldrett AJ, Craig JR, Kullerud G (1967) The central portion of the Fe–Ni–S system and its bearing on pentlandite solution in iron-nickel sulfide ores. Econ Geol 62:826–847

    Article  Google Scholar 

  • Naldrett AJ, Innes DG, Sowa J, Gorton M (1982) Compositional variation within and between five Sudbury ore deposits. Econ Geol 77:1519–1534

    Article  Google Scholar 

  • Naldrett AJ, Fedorenko AV, Asif M, Lin S, Kunilov VE, Stekhin AI, Lightfoot PC, Gorbachev NS (1996) Controls on the composition of Ni–Cu sulfide deposit as illustrated by those at Noril’sk, Siberia. Econ Geol 91:751–773

    Article  Google Scholar 

  • Naldrett AJ, Asif M, Schandl E, Searcy T, Morrison GG, Binney WP, Moore C (1999) Platinum-group elements in the Sudbury ores: significance with respect to the origin of different ore zones and to the exploration for footwall orebodies. Econ Geol 94:185–210

    Article  Google Scholar 

  • Ohmoto H (1986) Stable isotope geochemistry of ore deposits. Rev Mineral Geochem 16:491–559

    Google Scholar 

  • Ortega L, Lunar R, García Palomero F, Moreno T, Martín Estévez JR, Prichard HM, Fisher PC (2004) The Aguablanca Ni–Cu–PGE deposit, southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can Mineral 42:325–350

    Article  Google Scholar 

  • Peach CL, Mathez EA, Keays RR (1990) Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: implications for partial melting. Geochim Cosmochim Acta 54:3379–3389

    Article  Google Scholar 

  • Peregoedova AV, Ohnenstetter M (2002) Collectors of Pt, Pd and Rh in a S-poor Fe–Ni–Cu-sulfide system at 760 °C: results of experiments and implications for natural systems. Chem Geol 208:247–264

    Article  Google Scholar 

  • Peregoedova AV, Barnes S-J, Baker DR (2004) The formation of Pt–Ir alloys and Cu–Pd-rich sulfide melts by partial desulfurization of Fe–Ni–Cu sulfides: Results of experiments and implications for natural systems. Chem Geol 208:247–264

    Article  Google Scholar 

  • Pereira MF, Chichorro M, Linnemann U, Eguiluz L, Silva B (2006) Inherited arc signature in Ediacaran and Early Cambrian basins of the Ossa-Morena Zone (Iberian Massif, Portugal): paleogeographic link with European and North African Cadomian correlatives. Precambrian Res 144:297–315

    Article  Google Scholar 

  • Piña R (2006) El yacimiento de Ni–Cu–EGP de Aguablanca (Badajoz): Caracterización y modelización metalogenética. PhD thesis, Universidad Complutense de Madrid, Spain, p 254

    Google Scholar 

  • Piña R, Lunar R, Ortega L, Gervilla F, Alapieti T, Martínez C (2006) Petrology and geochemistry of mafic-ultramafic fragments from the Aguablanca (SW Spain) Ni–Cu ore breccia: Implications for the genesis of the deposit. Econ Geol 101:865–881

    Article  Google Scholar 

  • Piña R, Gervilla F, Ortega L, Lunar R (2008) Mineralogy and geochemistry of platinum-group elements in the Aguablanca Ni–Cu deposit (SW Spain). Miner Petrol 92:259–282

    Article  Google Scholar 

  • Piña R, Romeo I, Ortega L, Lunar R, Capote R, Gervilla F, Tejero R, Quesada C (2010) Origin and emplacement of the Aguablanca magmatic Ni–Cu–(PGE) sulfide deposit, SW Iberia: a multidisciplinary approach. Geol Soc Am Bull 122:915–925

    Article  Google Scholar 

  • Piña R, Gervilla F, Barnes S-J, Ortega L, Lunar R (2012) Distribution of platinum-group and chalcophile elements in the Aguablanca Ni–Cu sulfide deposit (SW Spain): evidence from a LA-ICP-MS study. Chem Geol 302–303:61–75

    Article  Google Scholar 

  • Piña R, Gervilla F, Barnes S-J, Ortega L, Lunar R (2013) Platinum-group elements-bearing pyrite from the Aguablanca Ni–Cu sulphide deposit (SW Spain): a LA-ICP-MS study. Eur J Mineral 25:241–252

    Article  Google Scholar 

  • Queffurus M, Barnes S-J (2015) A review of sulfur to selenium ratios in magmatic nickel–copper and platinum-group element deposits. Ore Geol Rev 69:301–324

    Article  Google Scholar 

  • Ripley EM (1990) Se/S ratios of the Virginia formation and Cu–Ni mineralization in the Babbitt area, Duluth Complex, Minnesota. Econ Geol 85:1935–1940

    Article  Google Scholar 

  • Ripley EM, Li C (2013) Sulfide saturation in Mafic Magmas: is external sulfur required for magmatic Ni–Cu–(PGE) ore genesis? Econ Geol 108:45–58

    Article  Google Scholar 

  • Robertson J, Ripley EM, Barnes SJ, Li C (2015) Sulfur liberation from country rocks and incorporation in mafic magmas. Econ Geol 110:1111–1123

    Article  Google Scholar 

  • Romeo I, Tejero R, Capote R, Lunar R (2008) 3-D gravity modelling of the Aguablanca Stock, tectonic control and emplacement of a Variscan gabbronorite bearing a Ni–Cu–PGE ore, SW Iberia. Geol Mag 145:345–359

    Article  Google Scholar 

  • Nägler T (1990) Sm-Nd, Rb-Sr and common lead isotope goechemistry on fine-grained sediments of the Iberian Massif. PhD thesis, ETH, Zurich, p 141

    Google Scholar 

  • Peralta A (2010) Estudio mineralógico y geoquímico del cuerpo profundo del yacimiento de Ni-Cu-EGP de Aguablanca. MSc. Universidad de Granada, Spain, p 52

    Google Scholar 

  • Samalens N, Barnes S-J, Sawyer EW (2017) The role of black shales as a source of sulfur and semimetals in magmatic nickel-copper deposits: example from the Partridge River Intrusion, Duluth Complex, Minnesota, USA. Ore Geol Rev 81:173–187

    Article  Google Scholar 

  • Smith JW, Holwell DA, McDonald I (2014) Precious and base metal geochemistry and mineralogy of the Grasvally Norite-Pyroxenite-Anorthosite (GNPA) member, northern Bushveld Complex, South Africa: implications for a multistage emplacement. Miner Deposita 49:667–692

    Article  Google Scholar 

  • Song XY, Li XR (2009) Geochemistry of the Kalatongke Ni–Cu–(PGE) sulfide deposit, NW China: implications for the formation of magmatic sulfide mineralization in a postcollisional environment. Miner Deposita 44:303–327

    Article  Google Scholar 

  • Su S, Li C, Zhou MF, Ripley EM, Qi L (2008) Controls on variations of platinum-group element concentrations in the sulfide ores of the Jinchuan Ni–Cu deposit, western China. Miner Deposita 43:609–622

    Article  Google Scholar 

  • Suárez S, Prichard HM, Velasco F, Fisher PC, McDonald I (2010) Alteration of platinum-group minerals and dispersion of platinum-group elements during progressive weathering of the Aguablanca Ni–Cu deposit, SW Spain. Miner Deposita 45:331–350

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins, Geological Society London Special Publication, p 313–345

    Article  Google Scholar 

  • Thériault RD, Barnes S-J (1998) Compositional variations in Cu-Ni-PGE sulfides of the Dunka Road deposit, Duluth Complex, Minnesota: the importance of combined assimilation and magmatic processes. Can Mineral 36:869–886

    Google Scholar 

  • Tomkins AG (2010) Wetting facilitates late-stage segregation of precious metal–enriched sulfosalt melt in magmatic sulfide systems. Geology 38:951–954

    Article  Google Scholar 

  • Tornos F, Velasco F (2002) The Sultana orebody (Ossa Morena Zone, Spain): insights into the evolution of Cu–(Au–Bi) mesothermal mineralization. In: Blundell DJ (ed) GEODE Study Centre, Grenoble, p 17

    Google Scholar 

  • Tornos F, Chiaradia M (2004) Plumbotectonic evolution of the Ossa-Morena Zone, Iberian Peninsula: tracing the influence of mantle-crust interaction in ore-forming processes. Econ Geol 99:965–985

    Article  Google Scholar 

  • Tornos F, Casquet C, Galindo C, Velasco F, Canales A (2001) A new style of Ni–Cu mineralization related to magmatic breccia pipes in a transpressional magmatic arc, Aguablanca, Spain. Miner Deposita 36:700–706

    Article  Google Scholar 

  • Tornos F, Inverno C, Casquet C, Mateus A, Ortiz G, Oliveira V (2004) The metallogenic evolution of the Ossa Morena Zone. J Iber Geol 30:143–180

    Google Scholar 

  • Tornos F, Galindo C, Casquet C, Rodríguez Pevida L, Martínez C, Martínez E, Velasco F, Iriondo A (2006) The Aguablanca Ni-(Cu) sulfide deposit, SW Spain: geologic and geochemical controls and the relationship with a midcrustal layered mafic complex. Miner Deposita 41:737–769

    Article  Google Scholar 

  • Zientek ML, Likhachev AP, Kunilov VE, Barnes SJ, Meier AL, Carlson RR, Briggs PH, Fries TL, Adrian BM (1994) Cumulus processes and the composition of magmatic ore deposits: examples from the Talnakh district, Russia. Ontario Geol Surv Spec Publ 5:373–392

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Piña .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piña, R. (2019). Ore-Forming Processes in the Aguablanca Ore Deposit. In: The Ni-Cu-(PGE) Aguablanca Ore Deposit (SW Spain). SpringerBriefs in World Mineral Deposits. Springer, Cham. https://doi.org/10.1007/978-3-319-93154-8_5

Download citation

Publish with us

Policies and ethics