Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

After the extensive discussion of bosonic and fermionic structures, we now dig deeper into the dynamical properties of these particles. More specifically, we focus on the concept of true indistinguishability and the additional interference effects arising because of it—even in the absence of physical interaction between the particles (Tichy 2011; Tichy et al. 2010, 2012). These many-body interferences are still rather poorly understood and not too much research has been done on them. The reason is that there are few many-particle systems with sufficient control that allow to treat non-Gaussian states (e.g. number states), which are required to see such fundamental quantum effects. For example, in well-controlled settings as photonics it is very difficult to generate number states, since one usually starts out from coherent or thermal light sources (Aspect et al. 1982; Ates et al. 2009; Eibl et al. 2003; Grice et al. 1998; Grice and Walmsley 1997; Huang et al. 2011; Kwiat et al. 1995; Metcalf et al. 2013; Mosley et al. 2008; Ou et al. 1999; Ra et al. 2013a; Santori et al. 2001, 2002; Tichy et al. 2011).

“O brave new world!”

John in “Brave new World” (Huxley 1932)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Later in Chap. 9 we explore particle transport properties in open systems where the number of particles is allowed to fluctuate.

  2. 2.

    Because the creation and annihilation operators are generators of the algebra of observables, this requirement is logical.

  3. 3.

    Since the derivations in this section hold both for fermions and bosons, we omit, for the time being, the index f / b in the second quantisation operators \(\Gamma \), originally defined in (7.89).

  4. 4.

    “Normally ordered” (Davies 1977a) refers to monomials where all creation operators are ordered on the left, whereas all annihilation operators are on the right.

  5. 5.

    Note that \(a^{\#}\) is a collective term for \(a^{\dag }\) and a, i.e. (8.10) holds for, both, creation and annihilation operators.

  6. 6.

    In the Schrödinger picture.

  7. 7.

    Which is actually not an observable, but rather a coherence (between the particles in modes \(\psi _1\) and \(\psi _2\)).

  8. 8.

    It will turn out that the output state of (8.26) describes very similar counting statistics to that of the output state for coherent light (8.31). This is a straightforward consequence of the law of large numbers.

  9. 9.

    We were also confronted with this issue in Chap. 4, see e.g. p. 79.

  10. 10.

    More specifically (Reck et al. 1994) shows that this amount is \(N(N-1)/2\) when one wishes to describe an \(N \times N\) unitary operation.

  11. 11.

    Thus the concept of “exchange interaction” e.g.  in the structure theory of helium (Madroñero 2004).

  12. 12.

    One can simply use that all spaces of equal, finite dimension are isomorphic (Igodt and Veys 2011).

  13. 13.

    This makes sense, because they can be told apart by the input direction they are following.

  14. 14.

    Note that in principle the normalisation factor \({\mathcal N}'\) depends only on \(\xi _1, \dots \xi _n\) in this case, because \(\left\langle f_i,f_j\right\rangle = \delta _{ij}\).

  15. 15.

    The proof relies on the “permanent-of-Gaussians conjecture” and on the “permanent anticoncentration conjecture” (see Aaronson and Arkhipov (2013) for details). Therefore it is formally not completely correct to refer to the result as a closed proof.

  16. 16.

    In computational complexity theory jargon the result states that the existence of an efficient simulation scheme for boson sampling implies a collapse of the polynomial hierarchy up to the third order. For details on this statement, we refer the reader to Aaronson and Arkhipov (2013), Moore and Mertens (2011). For the context of this dissertation, it suffices to know that this is a complexity theorist’s way of stating that it is highly unlikely to be possible.

  17. 17.

    In random matrix theory (RMT), the set of unitary matrices equipped with its Haar measure is also referred to as the Circular Unitary Ensemble (Akemann et al. 2011).

  18. 18.

    Think for example of Tichy et al. (2010), Tichy (2011), Tichy et al. (2014) to see that symmetries can make many-boson interference much more tractable.

  19. 19.

    Even though these algorithms still have an unfavourable scaling with increasing numbers of particles, they are much more capable of simulating small systems. One can, for example, apply them to simulate boson sampling with several dozens of particles on a normal laptop.

  20. 20.

    Experimentally, such a counter is rather difficult to construct. Standard photodetectors just click upon detection of one or more photons, e.g. the single-photon avalanche diodes (Cova et al. 1996) that are commonly used cannot resolve the photon number at a given time. The number of photons in a single mode is much harder to resolve, but efforts are being made (Humphreys et al. 2015). We are somewhat ambitious in the text and assume that full counting is feasible.

  21. 21.

    More formal proofs can be constructed in various ways. An appealing construction exploits the equivalence of a bosonic system with a tensor product of harmonic oscillators (see Sect. 7.3.2), to explicitly construct eigenstates of a number operator acting on one of these oscillators.

  22. 22.

    In principle, for each eigenvalue n, we obtain an enormous eigenspace on which to project. This implies that we must consider all wave functions which have a non-zero component in the n-particle sector. However, because we consider a projector on the whole eigenspace, we ultimately find that the only wave functions which are relevant in the sum (8.105) are those which are n-particle wave functions.

  23. 23.

    And it is obviously unreasonable to hope to do so.

  24. 24.

    Multisets are very similar to sets, but are an extension in that sense that elements can occur several times. For example \(\{1,2,3\}\) is a set, but \(\{1,1,2,3\}\) is a multiset. For an overview of the theoretical framework, see Blizard (1988)

  25. 25.

    To give a simple example, when we consider the set \(\mathcal {A} = \{1,1,2,3\}\), then we find that \(\mathcal {A} \cap \mathbb {N} = \{1,2,3\}\).

  26. 26.

    Were this not the case, we would find a row of zeroes in \(G^{V\setminus \mathcal {V},V\setminus \mathcal {V}'}\).

  27. 27.

    Which actually implies finding benchmarks of many-particle interference.

  28. 28.

    \(d < m\) is an integer which depends on the specific unitary scattering matrix.

  29. 29.

    Or any other correlation function that we derived for that matter.

  30. 30.

    The term “semiclassical” is here not interpreted in the same sense as in Engl et al. (2014). We rather use the terminology in the same, mean-field sense as Gessner et al. (2016).

  31. 31.

    To avoid indices of indices of indices, we simply write j rather than \(i_j\) in the following step.

  32. 32.

    As an example, consider the bunching event where all particles are detected in a single mode. There are only m such events which can occur for a total of \(m!/n!(m-n)!\) possible outcomes. Even with an enhanced probability, a lot of sampling is required to probe the relative frequency of such events.

  33. 33.

    “Low” order is an order which is significantly smaller than the number of particles. In this Dissertation, we focus on second and third order.

  34. 34.

    Keep in mind that these are multivariate analog of cumulants. They also occurs under the name joint cumulants, but we will follow the terminology of the quantum statistical mechanics community (Bratteli and Robinson 1997).

  35. 35.

    The decrease in order is seen by the term

    $$\sum _{k=1}^n U_{r i_k}U_{s i_k}\overline{U}_{r i_k}\overline{U}_{s i_k}$$

    which appears in all truncated correlation functions \(C^{b,f,d}_{rs}\). This summation only contains n terms, which is a considerable decrease compared to the \(n(n-1)\) terms which appear in

    $$\sum _{\begin{array}{c} k,l = 1\\ k \ne l \end{array}}^n U_{r i_k}U_{s i_l}\overline{U}_{r i_k}\overline{U}_{s i_l},$$

    for the correlation functions \(c^{b,f,d}_{rs}\).

  36. 36.

    The full single-particle Hilbert space is described by \(\mathcal {H}\cong \mathbb {C}^m \otimes \mathcal {H}_\mathrm{add}\). To observe interference patterns of indistinguishable bosons in the interferometer, each particle much be described by the same single-particle wave function in \(\mathcal {H}_\mathrm{add}\). For an extended discussion, see Sect. 8.3.4.

  37. 37.

    In the sense that we can obtain them from a simulation of a circuit described by a random unitary matrix U.

  38. 38.

    This notation was introduced by J.-D. Urbina and J. Kuipers in private communication.

  39. 39.

    The cycle notation of permutations is commonly used in abstract algebra and discrete mathematics (Biggs 1989). A cycle of length n \((i_1, \dots , i_n)\) represents a cyclic permutation \(i_1 \rightarrow i_2 \rightarrow \dots \rightarrow i_n \rightarrow i_1\). It turns out that any permutation can be interpreted as combination of several cycles. As an example, we may consider the set of three elements \(\{a,b,c\}\) and consider the permutation \(\{a,b,c\} \mapsto \{a,b,c\}\), which can be written as a combination of three cycles of length one: (a)(b)(c). As a second example, we consider \(\{a,b,c\} \mapsto \{c,b,a\}\) which is denoted by (b)(ac) in cycle nations. As a final example, \(\{a,b,c\} \mapsto \{c,a,b\}\) is written as (abc) in cycle notation. In representation theory, it is common to classify permutations based on cycle lengths (Hamermesh 1989). To use the examples of before, we could characterise (a)(b)(c) as a permutation with cycle lengths (1, 1, 1), whereas (b)(ac) has cycle lengths (1,2), and finally (abc) has cycle length (3).

  40. 40.

    Let us consider the difference between \(K_{l,1}\) and \(K_{l,2}\) in more depth to emphasise the idea: Both \(K_{l,1}\) and \(K_{l,2}\) start from the index set \(\{i_k,i_k,i_l\}\), however to represent the permutation of k and l, there are two possible choices for k. \(K_{l,1}\) represents the permutation \(\{i_k,i_k,i_l\} \rightarrow \{i_k,i_l,i_k\}\), whereas \(K_{l,2}\) represents \(\{i_k,i_k,i_l\} \rightarrow \{i_l,i_k,i_k\}\).

  41. 41.

    For the Fourier matrix, the normalised means of both \(C_{rs}\) and \(C_{qrs}\) are completely independent of the chosen input state (8.177). The physical interpretation of this result is currently unclear to us.

  42. 42.

    Mathematically, \(J=J'\) simply follows because the factor associated with the factor related to the additional degrees of freedom is of the type \(\left|\left\langle \chi _k,\chi _k\right\rangle \right|^2\left\langle \chi _l,\chi _l\right\rangle \), which is equal to one due to normalisation.

  43. 43.

    The most general definitions of Gaussian states are given in Sect. 7.7. However, a simpler introduction for states on the bosonic Fock space can be found in Sect. 7.6.4.

References

  • S. Aaronson, A. Arkhipov, The computational complexity of linear optics. Theory Comput. 9, 143–252 (2013). http://dx.doi.org/10.4086/toc.2013.v009a004

  • S. Aaronson, A. Arkhipov, Boson sampling is far from uniform. Quantum Info. Comput. 14, 1383–1423 (2014)

    Google Scholar 

  • A. Ahlbrecht, A. Alberti, D. Meschede, V.B. Scholz, A.H. Werner, R.F. Werner, Molecular binding in interacting quantum walks. New J. Phys. 14, 073050 (2012)

    Article  ADS  Google Scholar 

  • G. Akemann, J. Baik, P.D. Francesco (eds.), The Oxford Handbook of Random Matrix Theory (Oxford Handbooks in Mathematics, 2011)

    Google Scholar 

  • R. Alicki, M. Fannes, Quantum Dynamical Systems (Oxford University Press, Oxford, 2001)

    Book  MATH  Google Scholar 

  • M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  ADS  Google Scholar 

  • M.R. Andrews, C.G. Townsend, H.-J. Miesner, D.S. Durfee, D.M. Kurn, W. Ketterle, Observation of interference between two bose condensates. Science 275, 637–641 (1997)

    Article  Google Scholar 

  • L. Aolita, C. Gogolin, M. Kliesch, J. Eisert, Reliable quantum certification of photonic state preparations. Nat. Commun. 6, 8498 (2015)

    Article  ADS  Google Scholar 

  • A. Aspect, P. Grangier, G. Roger, Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedanken experiment: a new violation of Bell’s Inequalities. Phys. Rev. Lett. 49, 91–94 (1982)

    Article  ADS  Google Scholar 

  • S. Ates, S.M. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, P. Michler, Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Phys. Rev. Lett. 103, 167402 (2009)

    Article  ADS  Google Scholar 

  • V. Averchenko, C. Jacquard, V. Thiel, C. Fabre, N. Treps, Multimode theory of single-photon subtraction. New J. Phys. 18, 083042 (2016)

    Article  ADS  Google Scholar 

  • R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P. Roushan, J. Wenner, T.C. White, A.N. Cleland, J.M. Martinis, Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett. 111, 080502 (2013)

    Article  ADS  Google Scholar 

  • L. Benet, H.A. Weidenmüller, Review of the k -body embedded ensembles of Gaussian random matrices. J. Phys. A: Math. Gen. 36, 3569 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • L. Benet, T. Rupp, H.A. Weidenmüller, Spectral properties of the k-body embedded Gaussian ensembles of random matrices. Ann. Phys. 292, 67–94 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M. Bentivegna, N. Spagnolo, C. Vitelli, F. Flamini, N. Viggianiello, L. Latmiral, P. Mataloni, D.J. Brod, E.F. Galvao, A. Crespi, R. Ramponi, R. Osellame, F. Sciarrino, Experimental scattershot boson sampling. Sci. Adv. 1, e1400255–e1400255 (2015)

    Article  ADS  Google Scholar 

  • G. Berkolaiko, J. Kuipers, Moments of the Wigner delay times. J. Phys. A: Math. Theor. 43, 035101 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • G. Berkolaiko, J. Kuipers, Transport moments beyond the leading order. New J. Phys. 13, 063020 (2011)

    Article  ADS  MATH  Google Scholar 

  • H.A. Bethe, R.F. Bacher, Nuclear physics A. Stationary states of nuclei. Rev. Mod. Phys. 8, 82–229 (1936)

    Article  ADS  MATH  Google Scholar 

  • N. Biggs, Discrete Mathematics, Rev. edn. Oxford Science Publications (Clarendon Press; Oxford University Press, Oxford [England]: New York, 1989)

    Google Scholar 

  • W.D. Blizard, Multiset theory. Notre Dame J. Formal Logic 30, 36–66 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  • M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. (Cambridge University Press, Cambridge, New York, 1999)

    Book  MATH  Google Scholar 

  • O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics Equilibrium States (Models in Quantum Statistical Mechanics) (Springer, Berlin, 1997)

    MATH  Google Scholar 

  • M.J. Bremner, R. Jozsa, D.J. Shepherd, Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. Proc. R. Soc. A (2010). arXiv:10.1098/rspa.2010.0301

  • M.A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T.C. Ralph, A.G. White, Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013)

    Article  ADS  Google Scholar 

  • P.W. Brouwer, C.W.J. Beenakker, Diagrammatic method of integration over the unitary group, with applications to quantum transport in mesoscopic systems. J. Math. Phys. 37, 4904–4934 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A. Buchleitner, A.R. Kolovsky, Interaction-induced decoherence of atomic bloch oscillations. Phys. Rev. Lett. 91, 253002 (2003)

    Article  ADS  Google Scholar 

  • P. Bunyk, E. Hoskinson, M. Johnson, E. Tolkacheva, F. Altomare, A. Berkley, R. Harris, J. Hilton, T. Lanting, A. Przybysz, J. Whittaker, Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Trans. Appl. Supercond. 24, 1–10 (2014)

    Article  Google Scholar 

  • K. Burke, J. Werschnik, E.K.U. Gross, Time-dependent density functional theory: past, present, and future. J. Chem. Phys 123, 062206 (2005)

    Article  ADS  Google Scholar 

  • R.A. Campos, B.E.A. Saleh, M.C. Teich, Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics. Phys. Rev. A 40, 1371–1384 (1989)

    Article  ADS  Google Scholar 

  • J. Carolan, J.D.A. Meinecke, P.J. Shadbolt, N.J. Russell, N. Ismail, K. Wörhoff, T. Rudolph, M.G. Thompson, J.L. O’Brien, J.C.F. Matthews, A. Laing, On the experimental verification of quantum complexity in linear optics. Nat. Photon 8, 621–626 (2014)

    Article  ADS  Google Scholar 

  • G. Cennini, C. Geckeler, G. Ritt, M. Weitz, Interference of a variable number of coherent atomic sources. Phys. Rev. A 72, 051601 (2005)

    Article  ADS  Google Scholar 

  • U. Chabaud, T. Douce, D. Markham, P. van Loock, E. Kashefi, G. Ferrini, Continuous-variable sampling from photon-added or photon-subtracted squeezed states. Phys. Rev. A 96, 062307 (2017)

    Article  ADS  Google Scholar 

  • L. Chakhmakhchyan, N.J. Cerf, Boson sampling with Gaussian measurements. Phys. Rev. A 96, 032326 (2017)

    Article  ADS  Google Scholar 

  • S. Chu, Cold atoms and quantum control. Nature 416, 206–210 (2002)

    Article  ADS  Google Scholar 

  • P. Clifford, R. Clifford, The classical complexity of boson sampling, in Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’18 (Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2018), pp. 146–155

    Chapter  MATH  Google Scholar 

  • B. Collins, P. Śniady, Integration with respect to the haar measure on unitary, orthogonal and symplectic group. Commun. Math. Phys. 264, 773–795 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J.B. Conway, A Course in Functional Analysis. Graduate Texts in Mathematics, vol. 96, 2nd edn. (Springer, New York, 1997)

    Google Scholar 

  • S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, Avalanche photodiodes and quenching circuits for single-photon detection. Appl. Opt. 35, 1956 (1996)

    Article  ADS  Google Scholar 

  • A. Crespi, R. Osellame, R. Ramponi, M. Bentivegna, F. Flamini, N. Spagnolo, N. Viggianiello, L. Innocenti, P. Mataloni, F. Sciarrino, Suppression law of quantum states in a 3d photonic fast fourier transform chip. Nat. Commun. 7, 10469 EP (2016)

    Article  ADS  Google Scholar 

  • A. Crespi, Suppression laws for multiparticle interference in sylvester interferometers. Phys. Rev. A 91, 013811 (2015)

    Article  ADS  Google Scholar 

  • A. Crespi, R. Osellame, R. Ramponi, D.J. Brod, E.F. Galvão, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, F. Sciarrino, Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photon 7, 545–549 (2013)

    Article  ADS  Google Scholar 

  • E.B. Davies, Irreversible dynamics of infinite fermion systems. Commun. Math. Phys. 55, 231–258 (1977a)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

    Article  ADS  Google Scholar 

  • L. Deslauriers, S. Olmschenk, D. Stick, W.K. Hensinger, J. Sterk, C. Monroe, Scaling and suppression of anomalous heating in ion traps. Phys. Rev. Lett. 97, 103007 (2006)

    Article  ADS  Google Scholar 

  • C. Dittel, G. Dufour, M. Walschaers, G. Weihs, A. Buchleitner, R. Keil, Totally destructive interference for permutation-symmetric many-particle states. Phys. Rev. A 97, 062116 (2018a)

    Article  ADS  Google Scholar 

  • C. Dittel, G. Dufour, M. Walschaers, G. Weihs, A. Buchleitner, R. Keil, Totally destructive many-particle interference. Phys. Rev. Lett. 120, 240404 (2018b)

    Article  ADS  Google Scholar 

  • C. Dittel, R. Keil, G. Weihs, Many-body quantum interference on hypercubes. Quantum Sci. Technol. 2, 015003 (2017)

    Article  ADS  Google Scholar 

  • G. Dufour, T. Brünner, C. Dittel, G. Weihs, R. Keil, A. Buchleitner, Many-particle interference in a two-component bosonic Josephson junction: an all-optical simulation. New J. Phys. 19, 125015 (2017)

    Article  ADS  Google Scholar 

  • M. Eibl, S. Gaertner, M. Bourennane, C. Kurtsiefer, M. Żukowski, H. Weinfurter, Experimental observation of four-photon entanglement from parametric down-conversion. Phys. Rev. Lett. 90, 200403 (2003)

    Article  ADS  MATH  Google Scholar 

  • T. Engl, J. Dujardin, A. Argüelles, P. Schlagheck, K. Richter, J.D. Urbina, Coherent backscattering in fock space: a signature of quantum many-body interference in interacting bosonic systems. Phys. Rev. Lett. 112, 140403 (2014)

    Article  ADS  Google Scholar 

  • B. Everitt, The Cambridge Dictionary of Statistics (Cambridge University Press, Cambridge, 1998)

    MATH  Google Scholar 

  • M. Fannes, B. Nachtergaele, R.F. Werner, Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443–490 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M. Fannes, B. Nachtergaele, R.F. Werner, Finitely correlated pure states. J. Funct. Anal. 120, 511–534 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Genske, W. Alt, A. Steffen, A.H. Werner, R.F. Werner, D. Meschede, A. Alberti, Electric quantum walks with individual atoms. Phys. Rev. Lett. 110, 190601 (2013)

    Article  ADS  Google Scholar 

  • M. Gessner, Dynamics and characterization of composite quantum systems. Ph.D. thesis, Albert-Ludwigs-Universität Freiburg, Freiburg, 2015

    Google Scholar 

  • M. Gessner, V.M. Bastidas, T. Brandes, A. Buchleitner, Semiclassical excited-state signatures of quantum phase transitions in spin chains with variable-range interactions. Phys. Rev. B 93, 155153 (2016)

    Article  ADS  Google Scholar 

  • A. Giannopoulos, V. Milman, Concentration property on probability spaces. Adv. Math. 156, 77–106 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • T. Giordani, F. Flamini, M. Pompili, N. Viggianiello, N. Spagnolo, A. Crespi, R. Osellame, N. Wiebe, M. Walschaers, A. Buchleitner, F. Sciarrino, Experimental statistical signature of many-body quantum interference. Nat. Photonics 12, 173–178 (2018)

    Article  ADS  Google Scholar 

  • C. Gogolin, M. Kliesch, L. Aolita, J. Eisert, Boson-sampling in the light of sample complexity (2013). arXiv:1306.3995 [quant-ph]

  • W.P. Grice, I.A. Walmsley, Spectral information and distinguishability in type-II down-conversion with a broadband pump. Phys. Rev. A 56, 1627–1634 (1997)

    Article  ADS  Google Scholar 

  • W.P. Grice, R. Erdmann, I.A. Walmsley, D. Branning, Spectral distinguishability in ultrafast parametric down-conversion. Phys. Rev. A 57, R2289–R2292 (1998)

    Article  ADS  Google Scholar 

  • G. Grynberg, A. Aspect, C. Fabre, Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light (Cambridge University Press, Cambridge, 2010)

    Book  MATH  Google Scholar 

  • Z. Hadzibabic, S. Stock, B. Battelier, V. Bretin, J. Dalibard, Interference of an array of independent Bose-Einstein condensates. Phys. Rev. Lett. 93, 180403 (2004)

    Article  ADS  Google Scholar 

  • M. Hamermesh, Group Theory and its Application to Physical Problems, Dover Books on Physics and Chemistry (Dover Publications, New York, 1989)

    Google Scholar 

  • C.S. Hamilton, R. Kruse, L. Sansoni, C. Silberhorn, I. Jex, Driven quantum walks. Phys. Rev. Lett. 113, 083602 (2014)

    Article  ADS  Google Scholar 

  • C.S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C. Silberhorn, I. Jex, Gaussian boson sampling. Phys. Rev. Lett. 119, 170501 (2017)

    Article  ADS  Google Scholar 

  • D.M. Harber, J.M. McGuirk, J.M. Obrecht, E.A. Cornell, Thermally induced losses in ultra-cold atoms magnetically trapped near room-temperature surfaces. J. Low Temp. Phys. 133, 229–238 (2003)

    Article  ADS  Google Scholar 

  • B. Hein, G. Tanner, Quantum search algorithms on a regular lattice. Phys. Rev. A 82, 012326 (2010)

    Article  ADS  Google Scholar 

  • J. Helsen, Structure of coherent fermionic states. Master thesis, KU Leuven, Leuven, 2015

    Google Scholar 

  • C.K. Hong, Z.Y. Ou, L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987)

    Article  ADS  Google Scholar 

  • Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, G.-C. Guo, Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state. Nat. Commun. 2, 546 (2011)

    Article  Google Scholar 

  • P.C. Humphreys, B.J. Metcalf, T. Gerrits, T. Hiemstra, A.E. Lita, J. Nunn, S.W. Nam, A. Datta, W.S. Kolthammer, I.A. Walmsley, Tomography of photon-number resolving continuous-output detectors. New J. Phys. 17, 103044 (2015)

    Article  ADS  Google Scholar 

  • A. Huxley, Brave New World (Chatto & Windus, 1932)

    Google Scholar 

  • P. Igodt, W. Veys, Lineaire Algebra (Universitaire Pers, Leuven, 2011)

    Google Scholar 

  • L. Kaplan, T. Papenbrock, Wave function structure in two-body random matrix ensembles. Phys. Rev. Lett. 84, 4553–4556 (2000)

    Article  ADS  Google Scholar 

  • J. Kelly, R. Barends, A.G. Fowler, A. Megrant, E. Jeffrey, T.C. White, D. Sank, J.Y. Mutus, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P.J.J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, A.N. Cleland, J.M. Martinis, State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015)

    Article  ADS  Google Scholar 

  • E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  Google Scholar 

  • M. Köhl, H. Moritz, T. Stöferle, K. Günter, T. Esslinger, Fermionic atoms in a three dimensional optical lattice: observing fermi surfaces, dynamics, and interactions. Phys. Rev. Lett. 94, 080403 (2005)

    Article  ADS  Google Scholar 

  • P. Kok, H. Lee, J.P. Dowling, Creation of large-photon-number path entanglement conditioned on photodetection. Phys. Rev. A 65, 052104 (2002)

    Article  ADS  Google Scholar 

  • A.R. Kolovsky, A. Buchleitner, Floquet-Bloch operator for the Bose-Hubbard model with static field. Phys. Rev. E 68, 056213 (2003)

    Article  ADS  Google Scholar 

  • J. Kuipers, M. Sieber, Semiclassical relation between open trajectories and periodic orbits for the Wigner time delay. Phys. Rev. E 77, 046219 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • P.G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A.V. Sergienko, Y. Shih, New high-intensity source of polarization-entangled photon Pairs. Phys. Rev. Lett. 75, 4337–4341 (1995)

    Article  ADS  Google Scholar 

  • S. Laibacher, V. Tamma, From the physics to the computational complexity of multiboson correlation interference. Phys. Rev. Lett. 115, 243605 (2015)

    Article  ADS  Google Scholar 

  • D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  • L. Latmiral, N. Spagnolo, F. Sciarrino, Towards quantum supremacy with lossy scattershot boson sampling. New J. Phys. 18, 113008 (2016)

    Article  ADS  Google Scholar 

  • D. Leibfried, M.D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W.M. Itano, J.D. Jost, C. Langer, D.J. Wineland, Toward heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004)

    Article  ADS  Google Scholar 

  • J.C. Loredo, M.A. Broome, P. Hilaire, O. Gazzano, I. Sagnes, A. Lemaitre, M.P. Almeida, P. Senellart, A.G. White, Boson sampling with single-photon fock states from a bright solid-state source. Phys. Rev. Lett. 118, 130503 (2017)

    Article  ADS  Google Scholar 

  • A.P. Lund, A. Laing, S. Rahimi-Keshari, T. Rudolph, J.L. O’Brien, T.C. Ralph, Boson sampling from a Gaussian state. Phys. Rev. Lett. 113, 100502 (2014)

    Article  ADS  Google Scholar 

  • A.P. Lund, M.J. Bremner, T.C. Ralph, Quantum sampling problems, boson sampling and quantum supremacy. npj Quantum Inf. 3, 15 (2017)

    Google Scholar 

  • J. Madroñero, Spectral properties of planar helium under periodic driving. Ph.D. thesis, Ludwig-Maximilians-Universität München, München, 2004

    Google Scholar 

  • L. Mandel, Quantum theory of interference effects produced by independent light beams. Phys. Rev. 134, A10–A15 (1964)

    Article  ADS  Google Scholar 

  • L. Mandel, Photon interference and correlation effects produced by independent quantum sources. Phys. Rev. A 28, 929–943 (1983)

    Article  ADS  Google Scholar 

  • L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  • K. Mayer, Many-particle quantum walks. Diploma thesis, Albert-Ludwigs Universität Freiburg, Freiburg, 2012

    Google Scholar 

  • K. Mayer, M.C. Tichy, F. Mintert, T. Konrad, A. Buchleitner, Counting statistics of many-particle quantum walks. Phys. Rev. A 83, 062307 (2011)

    Article  ADS  Google Scholar 

  • A.J. Menssen, A.E. Jones, B.J. Metcalf, M.C. Tichy, S. Barz, W.S. Kolthammer, I.A. Walmsley, Distinguishability and many-particle interference. Phys. Rev. Lett. 118, 153603 (2017)

    Article  ADS  Google Scholar 

  • B.J. Metcalf, N. Thomas-Peter, J.B. Spring, D. Kundys, M.A. Broome, P.C. Humphreys, X.-M. Jin, M. Barbieri, W. Steven Kolthammer, J.C. Gates, B.J. Smith, N.K. Langford, P.G.R. Smith, I.A. Walmsley, Multiphoton quantum interference in a multiport integrated photonic device. Nat. Commun. 4, 1356 (2013)

    Article  Google Scholar 

  • C. Moore, S. Mertens, The Nature of Computation (Oxford University Press, Oxford [England]; New York, 2011)

    Google Scholar 

  • P.J. Mosley, J.S. Lundeen, B.J. Smith, P. Wasylczyk, A.B. U’Ren, C. Silberhorn, I.A. Walmsley, Heralded generation of ultrafast single photons in pure quantum states. Phys. Rev. Lett. 100, 133601 (2008)

    Article  ADS  Google Scholar 

  • S. Mukamel, Principles of Nonlinear Optical Spectroscopy. Oxford Series in Optical and Imaging Sciences, vol. 6 (Oxford University Press, New York, 2009)

    Google Scholar 

  • M. Müller, K. Hammerer, Y.L. Zhou, C.F. Roos, P. Zoller, Simulating open quantum systems: from many-body interactions to stabilizer pumping. New J. Phys. 13, 085007 (2011)

    Article  ADS  Google Scholar 

  • J.W. Negele, H. Orland, Quantum Many-particle Systems (Perseus Books, Reading, 1998)

    Google Scholar 

  • A. Neville, C. Sparrow, R. Clifford, E. Johnston, P.M. Birchall, A. Montanaro, A. Laing, Classical boson sampling algorithms with superior performance to near-term experiments. Nat. Phys. 13, 1153 EP (2017)

    Article  ADS  Google Scholar 

  • M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, 10th edn. (Cambridge University Press, Cambridge, 2010)

    Book  MATH  Google Scholar 

  • J.P. Olson, K.P. Seshadreesan, K.R. Motes, P.P. Rohde, J.P. Dowling, Sampling arbitrary photon-added or photon-subtracted squeezed states is in the same complexity class as boson sampling. Phys. Rev. A 91, 022317 (2015)

    Article  ADS  Google Scholar 

  • Z.Y. Ou, Quantum theory of fourth-order interference. Phys. Rev. A 37, 1607–1619 (1988)

    Article  ADS  Google Scholar 

  • Z.Y. Ou, J.-K. Rhee, L.J. Wang, Photon bunching and multiphoton interference in parametric down-conversion. Phys. Rev. A 60, 593–604 (1999)

    Article  ADS  Google Scholar 

  • H. Paul, Interference between independent photons. Rev. Mod. Phys. 58, 209–231 (1986)

    Article  ADS  Google Scholar 

  • G.K. Pedersen, Analysis Now (Springer, New York, 1989)

    Book  MATH  Google Scholar 

  • B. Peropadre, G.G. Guerreschi, J. Huh, A. Aspuru-Guzik, Proposal for microwave boson sampling. Phys. Rev. Lett. 117, 140505 (2016)

    Article  ADS  Google Scholar 

  • A. Peruzzo, M. Lobino, J.C.F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M.G. Thompson, J.L. OBrien, Quantum walks of correlated photons. Science 329, 1500–1503 (2010)

    Article  ADS  Google Scholar 

  • R.L. Pfleegor, L. Mandel, Interference of independent photon beams. Phys. Rev. 159, 1084–1088 (1967)

    Article  ADS  Google Scholar 

  • A.V. Ponomarev, A.R. Kolovsky, Dipole and Bloch oscillations of cold atoms in a parabolic lattice. Laser Phys. 16, 367–370 (2006)

    Article  ADS  Google Scholar 

  • A.V. Ponomarev, J. Madroñero, A.R. Kolovsky, A. Buchleitner, Atomic current across an optical lattice. Phys. Rev. Lett. 96, 050404 (2006)

    Article  ADS  Google Scholar 

  • P.M. Preiss, R. Ma, M.E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, M. Greiner, Strongly correlated quantum walks in optical lattices. Science 347, 1229–1233 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Y.-S. Ra, M.C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, Y.-H. Kim, Nonmonotonic quantum-to-classical transition in multiparticle interference. PNAS 110, 1227–1231 (2013a)

    Article  ADS  Google Scholar 

  • Y.-S. Ra, M.C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, Y.-H. Kim, Observation of detection-dependent multi-photon coherence times. Nat. Commun. 4 (2013b)

    Google Scholar 

  • Y.-S. Ra, C. Jacquard, A. Dufour, C. Fabre, N. Treps, Tomography of a mode-tunable coherent single-photon subtractor. Phys. Rev. X 7, 031012 (2017)

    Google Scholar 

  • W. Radloff, Zur interferenz unabhängiger lichtstrahlen geringer intensität. Annalen der Physik 481, 178–189 (1971)

    Article  ADS  Google Scholar 

  • S. Rahimi-Keshari, T.C. Ralph, C.M. Caves, Sufficient conditions for efficient classical simulation of quantum optics. Phys. Rev. X 6, 021039 (2016)

    Google Scholar 

  • J.G. Rarity, P.R. Tapster, R. Loudon, Non-classical interference between independent sources. J. Opt. B: Quantum Semiclass. Opt. 7, S171 (2005)

    Article  ADS  Google Scholar 

  • M. Reck, A. Zeilinger, H.J. Bernstein, P. Bertani, Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994)

    Article  ADS  Google Scholar 

  • L. Rigovacca, C. Di Franco, B.J. Metcalf, I.A. Walmsley, M.S. Kim, Nonclassicality criteria in multiport interferometry. Phys. Rev. Lett. 117, 213602 (2016)

    Article  ADS  Google Scholar 

  • J. Roslund, R.M. de Araújo, S. Jiang, C. Fabre, N. Treps, Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photon 8, 109–112 (2014)

    Article  ADS  Google Scholar 

  • L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502 (2012)

    Article  ADS  Google Scholar 

  • C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, Triggered single photons from a quantum dot. Phys. Rev. Lett. 86, 1502–1505 (2001)

    Article  ADS  Google Scholar 

  • C. Santori, D. Fattal, J. Vučković, G.S. Solomon, Y. Yamamoto, Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002)

    Article  ADS  Google Scholar 

  • F. Schlawin, K.E. Dorfman, B.P. Fingerhut, S. Mukamel, Manipulation of two-photon-induced fluorescence spectra of chromophore aggregates with entangled photons: a simulation study. Phys. Rev. A 86, 023851 (2012b)

    Article  ADS  Google Scholar 

  • W. Schleich, Quantum Optics in Phase Space (Wiley-VCH, Berlin, 2001)

    Book  MATH  Google Scholar 

  • C. Schneider, D. Porras, T. Schaetz, Experimental quantum simulations of many-body physics with trapped ions. Rep. Prog. Phys. 75, 024401 (2012)

    Article  ADS  Google Scholar 

  • N. Schuch, D. Pérez-García, I. Cirac, Classifying quantum phases using matrix product states and projected entangled pair states. Phys. Rev. B 84, 165139 (2011)

    Article  ADS  Google Scholar 

  • K.P. Seshadreesan, J.P. Olson, K.R. Motes, P.P. Rohde, J.P. Dowling, Boson sampling with displaced single-photon Fock states versus single-photon-added coherent states: the quantum-classical divide and computational-complexity transitions in linear optics. Phys. Rev. A 91, 022334 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • V.S. Shchesnovich, Partial indistinguishability theory for multiphoton experiments in multiport devices. Phys. Rev. A 91, 013844 (2015a)

    Article  ADS  MathSciNet  Google Scholar 

  • V.S. Shchesnovich, Tight bound on the trace distance between a realistic device with partially indistinguishable bosons and the ideal boson sampling. Phys. Rev. A 91, 063842 (2015b)

    Article  ADS  MathSciNet  Google Scholar 

  • C. Shen, Z. Zhang, L.-M. Duan, Scalable implementation of boson sampling with trapped ions. Phys. Rev. Lett. 112, 050504 (2014)

    Article  ADS  Google Scholar 

  • J.F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, S. Kuhr, Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010)

    Article  ADS  Google Scholar 

  • P. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • N. Spagnolo, C. Vitelli, M. Bentivegna, D.J. Brod, A. Crespi, F. Flamini, S. Giacomini, G. Milani, R. Ramponi, P. Mataloni, R. Osellame, E.F. Galvão, F. Sciarrino, Experimental validation of photonic boson sampling. Nat. Photon 8, 615–620 (2014)

    Article  ADS  Google Scholar 

  • J.B. Spring, B.J. Metcalf, P.C. Humphreys, W.S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N.K. Langford, D. Kundys, J.C. Gates, B.J. Smith, P.G.R. Smith, I.A. Walmsley, Boson sampling on a photonic chip. Science 339, 798–801 (2013)

    Article  ADS  Google Scholar 

  • H.-J. Stöckmann, Quantum Chaos: An Introduction (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  • G.G. Stokes, On the perfect blackness of the central spot in Newton’s rings, and on the verification of Fresnel’s formulae for the intensities of reflected and refracted rays. Camb. Dublin Math. J. 4, 1–14 (1849)

    Google Scholar 

  • V. Tamma, S. Laibacher, Multiboson correlation interferometry with multimode thermal sources. Phys. Rev. A 90, 063836 (2014)

    Article  ADS  Google Scholar 

  • S.-H. Tan, Y.Y. Gao, H. de Guise, B.C. Sanders, Su(3) quantum interferometry with single-photon input pulses. Phys. Rev. Lett. 110, 113603 (2013)

    Article  ADS  Google Scholar 

  • G. Tanner, K. Richter, J.-M. Rost, The theory of two-electron atoms: between ground state and complete fragmentation. Rev. Mod. Phys. 72, 497–544 (2000)

    Article  ADS  Google Scholar 

  • M.C. Tichy, Entanglement and interference of identical particles. Ph.D. thesis, Albert-Ludwigs Universität Freiburg, Freiburg, 2011

    Google Scholar 

  • M.C. Tichy, Interference of identical particles from entanglement to boson-sampling. J. Phys. B: At. Mol. Opt. Phys. 47, 103001 (2014)

    Article  ADS  Google Scholar 

  • M.C. Tichy, Sampling of partially distinguishable bosons and the relation to the multidimensional permanent. Phys. Rev. A 91, 022316 (2015)

    Article  ADS  Google Scholar 

  • M.C. Tichy, M. Tiersch, F. de Melo, F. Mintert, A. Buchleitner, Zero-transmission law for multiport beam splitters. Phys. Rev. Lett. 104, 220405 (2010)

    Article  ADS  Google Scholar 

  • M.C. Tichy, H.-T. Lim, Y.-S. Ra, F. Mintert, Y.-H. Kim, A. Buchleitner, Four-photon indistinguishability transition. Phys. Rev. A 83, 062111 (2011)

    Article  ADS  Google Scholar 

  • M.C. Tichy, M. Tiersch, F. Mintert, A. Buchleitner, Many-particle interference beyond many-boson and many-fermion statistics. New J. Phys. 14, 093015 (2012)

    Article  ADS  Google Scholar 

  • M.C. Tichy, F. de Melo, M. Kuś, F. Mintert, A. Buchleitner, Entanglement of identical particles and the detection process. Fortschr. Phys. 61, 225–237 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • M.C. Tichy, K. Mayer, A. Buchleitner, K. Mølmer, Stringent and efficient assessment of boson-sampling devices. Phys. Rev. Lett. 113, 020502 (2014)

    Article  ADS  Google Scholar 

  • M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, P. Walther, Experimental boson sampling. Nat. Photon 7, 540–544 (2013)

    Article  Google Scholar 

  • M. Tillmann, S.-H. Tan, S.E. Stoeckl, B.C. Sanders, H. de Guise, R. Heilmann, S. Nolte, A. Szameit, P. Walther, Generalized multiphoton quantum interference. Phys. Rev. X 5, 041015 (2015)

    Google Scholar 

  • Q.A. Turchette, B.E. Kielpinski, D. King, D.M. Leibfried, C.J. Meekhof, M.A. Myatt, C.A. Rowe, C.S. Sackett, W.M. Wood, C. Monroe Itano, D.J. Wineland, Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 063418 (2000)

    Article  ADS  Google Scholar 

  • J.-D. Urbina, J. Kuipers, S. Matsumoto, Q. Hummel, K. Richter, Multiparticle correlations in mesoscopic scattering: Boson sampling, birthday paradox, and Hong-Ou-Mandel profiles. Phys. Rev. Lett. 116, 100401 (2016)

    Article  ADS  Google Scholar 

  • F. Verstraete, J.I. Cirac, Matrix product states represent ground states faithfully. Phys. Rev. B 73, 094423 (2006)

    Article  ADS  Google Scholar 

  • F. Verstraete, V. Murg, J.I. Cirac, Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57, 143–224 (2008)

    Article  ADS  Google Scholar 

  • N. Viggianiello, F. Flamini, L. Innocenti, D. Cozzolino, M. Bentivegna, N. Spagnolo, A. Crespi, D.J. Brod, E.F. Galvao, R. Osellame, F. Sciarrino, Experimental Generalized Quantum Suppression Law in Sylvester Interferometers (New J, Phys, 2018)

    Article  ADS  Google Scholar 

  • M. Walschaers, Counting messages of quantum sources. Master thesis, KU Leuven, 2011

    Google Scholar 

  • M. Walschaers, J. Kuipers, A. Buchleitner, From many-particle interference to correlation spectroscopy. Phys. Rev. A 94, 020104 (2016a)

    Article  ADS  Google Scholar 

  • M. Walschaers, J. Kuipers, J.-D. Urbina, K. Mayer, M.C. Tichy, K. Richter, A. Buchleitner, A statistical benchmark for bosonsampling. New. J. Phys. 18, 032001 (2016b)

    Article  ADS  MathSciNet  Google Scholar 

  • M. Walschaers, C. Fabre, V. Parigi, N. Treps, Entanglement and wigner function negativity of multimode non-gaussian states. Phys. Rev. Lett. 119, 183601 (2017b)

    Article  ADS  Google Scholar 

  • H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Höfling, C.-Y. Lu, J.-W. Pan, High-efficiency multiphoton boson sampling. Nat. Photonics 11, 361 EP (2017)

    Article  ADS  Google Scholar 

  • X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, J.-W. Pan, Observation of eight-photon entanglement. Nat. Photon 6, 225–228 (2012)

    Google Scholar 

  • T. Young, The Bakerian lecture: experiments and calculations relative to physical optics. Phil. Trans. R. Soc. Lond. 94, 1–16 (1804)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Walschaers .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walschaers, M. (2018). Many-Particle Interference. In: Statistical Benchmarks for Quantum Transport in Complex Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-93151-7_8

Download citation

Publish with us

Policies and ethics