Skip to main content

Describing Many-Particle Quantum Systems

  • Chapter
  • First Online:
  • 498 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter is mainly based on the lectures presented by Mark Fannes at the COST Physics School on “New trends in many-particle quantum transport” of February 2015. These lecture notes were, in turn, based on several rather technical textbooks (Alicki and Fannes 2001; Benatti et al. 2010; Bratteli and Robinson 1987, 1997; Davidson 1996; Dereziński 2006; Evans and Kawahigashi 1998; Petz 1990) and we refer the interested reader to these works for more mathematical background on the results presented here. Our goal is to bring these results from the mathematical quantum physics community closer to the current mainstream quantum physics research.

More is different

Philip W. Anderson in (1972)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In a mathematical phrasing, one may think of the observable which describes the measurement.

  2. 2.

    For single-particle systems there typically is no need to proceed to more abstract algebras of observables, since there usually the GNS construction (see Sect. 2.3.2) does lead to a unique Hilbert space.

  3. 3.

    Classically this would be connected to an increase of the dimensions of phase-space.

  4. 4.

    Because the group \(S_2\) contains only two elements, one of which is the identity, it is sufficient to focus on the action of U.

  5. 5.

    In the next section, the Schur-Weyl duality is more generally formulated in Eq. (7.22).

  6. 6.

    A total set in the context of topological vector spaces is a set, the linear span of which is dense in the full topological vector space. In a Hilbert space this becomes equivalent to stating that the only vector orthogonal to all the vectors in the set is the zero-vector.

  7. 7.

    The norm structure is straightforwardly inherited from the norm that lies on the single-particle Hilbert space \(\mathcal {H}\).

  8. 8.

    Note that the component \(\psi ^{(0)}\) on the zero-particle sector of \(\Psi \) is simply a complex number, describing the component of the wave function that does not contain any particle. Upon acting with the creation operator, a particle is created, hence there is no longer any fraction of the wave function that contains no particle, and the zero-particle component of \(\Psi \) acquires one particle with wave function \(\phi \).

  9. 9.

    One can employ exactly the same argument for distinguishable, though identical, fermions.

  10. 10.

    We will use the term modes to describe the degrees of freedom which are seen by each individual particle in the system. In other words, the single-particle Hilbert space \(\mathcal {H}\) can be seen as the structure that describes the quantum mechanics for these modes.

  11. 11.

    Equation (7.43) can be thought of as a block diagonal representation. Therefore, we can restrict ourselves to considering \(a^{\dag }(f): \mathcal {H}^{(n)}\rightarrow \mathcal {H}^{(n+1)}\). We can now consider \(\Psi \in \mathcal {H}^{(n)}\) and \(\Phi \in \mathcal {H}^{(n+1)}\), with \(\Psi = \psi _1 \wedge \dots \wedge \psi _n\) and \(\Phi = \phi _1 \wedge \dots \wedge \phi _{n+1} \), and compute \(\left\langle a^{\dag }(f)\Psi ,\Phi \right\rangle = \sum _{\pi \in S_{n+1}} \left\langle f,\phi _{\pi (1)}\right\rangle \left\langle \psi _1,\phi _{\pi (2)}\right\rangle \dots \left\langle \psi _n,\phi _{\pi (n+1)}\right\rangle \). The adjoint is now defined by demanding that \(\left\langle a^{\dag }(f) \Psi ,\Phi \right\rangle = \left\langle \Psi ,a(f)\Phi \right\rangle \) for all \(\Psi \in \mathcal {H}^{(n)}\) and \(\Phi \in \mathcal {H}^{(n+1)}\). Because the Slater determinants form a total set, we can define the annihilation operator by means of its action on such vectors. The result (7.75) follows from the evaluation of the inner products.

  12. 12.

    Thus, if an m-particle observable acts on an n-wave function, the result will be zero whenever \(n < m\).

  13. 13.

    A word on notation: Whenever we consider an operator A, acting on some Hilbert space \(\mathcal {H}\), we denote \(A\mid _{\mathcal{K} \subset \mathcal {H}}\) the restriction of A on the subspace \(\mathcal{K} \subset \mathcal {H}\). Such a restriction simply limits the domain of the operator to the smaller subspace.

  14. 14.

    Alternatively, see Dierckx et al. (2008) for applications in quantum information theory.

  15. 15.

    In the next section, however, we sill see that Fock space is not as all-inclusive as it is often presented.

  16. 16.

    In Sect. 2.3.1, we introduced the spectral theorem with the explicit demand that the spectral measure is projector-valued. This demand is, however, not strictly necessary and can be dropped to find a more general form of the spectral theorem. This constructions, in relation to quantum probability theory, are discussed in Holevo (2001) and can be connected to Naimark’s (\(\cong \) Neumark \(\mathrm {mod}\) transcription) dilation theorem (Neumark 1943; Stinespring 1955) which characterises positive-operator valued measures.

  17. 17.

    Hence, we consider single-particle Hilbert space \(\mathcal {H}\cong \mathbb {C}\).

  18. 18.

    Note that Mandel and Wolf (1995) uses different names for these states.

  19. 19.

    In this case, we are just dealing with a parameter \(\zeta \in \mathbb {C}\), since we only consider a single-mode space.

  20. 20.

    We already introduced this type of operator in Chap. 3 to describe time-reversal.

  21. 21.

    This also is a common topic in single-particle systems (Bohigas et al. 1993; de Almeida 1998; Heller 1984; Leboeuf and Saraceno 1990).

  22. 22.

    Also known as Q representation or Glauber Q representation.

  23. 23.

    To extend this notion to a framework of many degrees of freedom, some effort is required to actually define this projector. The ultimate result (Fannes and Verbeure 1975; Petz 1990) for a single-particle Hilbert space \(\mathcal {H}\) of dimension d is given by

    $$\begin{aligned} P_{\alpha } :=\frac{1}{\pi ^d}\int _{\mathcal {H}} \left\langle \Psi _{\alpha }, W(-\phi ) \Psi _{\alpha }\right\rangle W(\phi ) \mathrm{d}\phi . {(7.196)} \end{aligned}$$

    This result can also be extended to innfinite-dimensional single-particle spaces (Fannes and Verbeure 1975).

  24. 24.

    Remember that in Chap. 2 we introduced the normal states as those states which allow for a density matrix representation. More specifically, we would here refer to a normal state with respect to the Fock representation (see Sect. 7.7.2).

  25. 25.

    \(\mathbb {E}\) denotes the expectation value.

  26. 26.

    The Q and W in equation (7.199) denote operators on Fock space and should not be confused with the Husimi function \(\tilde{Q}\) and Wigner function \(\tilde{W}\).

  27. 27.

    In contrast to the coherent states of Sect. 7.6.2.

  28. 28.

    See Appendix A for several formal definitions.

  29. 29.

    A Wick monomial is a monomial of creation and annihilation operators, e.g. \(c^{*}(\psi _1)\dots c^*(\psi _n)c(\phi _m) \dots c(\phi _1)\) (Davies 1977).

  30. 30.

    Truncated correlation functions are the multivariate version of cumulants and are also regularly referred to as “joint cumulants”.

  31. 31.

    \(c^{\#}\)” as a collective term to denote both “c” and “\(c^*\)”, e.g. each \(c^{\#}\) in (7.227) can be replaced by c or by \(c^*\).

  32. 32.

    Technically, these are gauge transformations with respect to the group U(1), as commonly encountered in quantum electrodynamics (Cheng and Li 1984), where these gauge transformations refer to different choices of vector potentials. In principle, we can define more general gauge transformations with respect to other groups (Bratteli and Robinson 1987, 1997), but when we here refer to gauge-invariant states the relevant group is U(1).

  33. 33.

    For a definition, see the footnote on p. 39 or (Conway 1997; Pedersen 1989).

  34. 34.

    This directly follows from (7.259) and (7.260).

  35. 35.

    The consequence of this theorem is fundamental in the sense that it formalises the equivalence of Schrödinger’s wave mechanics and Heisenberg’s matrix mechanics. Moreover, the fact that this theorem only holds for \(\dim \mathcal{S} < \infty \) implies that in quantum field theories this equivalence breaks down.

  36. 36.

    Note that we introduced the quadratures (7.135) as induced by a specific representation. Since each state naturally gives rise to a GNS representation, we may label the quadratures by the state \(\omega \).

  37. 37.

    Let us directly note that the term “Fock state” in mathematical physics does not refer to the “Fock state” in for example quantum optics. What quantum opticians refer to as a Fock state is rather a number state with respect to the Fock representation.

References

  • R. Alicki, Field-theoretical methods, in Quantum Information, Computation and Cryptography, ed. by F. Benatti, M. Fannes, R. Floreanini, D. Petritis. Lecture Notes in Physics, vol. 808 (Springer, Berlin, 2010), pp. 151–174

    Google Scholar 

  • R. Alicki, M. Fannes, Quantum Dynamical Systems (Oxford University Press, Oxford, 2001)

    Google Scholar 

  • P.W. Anderson, More is different. Science 177, 393–396 (1972)

    Article  ADS  Google Scholar 

  • M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  ADS  Google Scholar 

  • M.R. Andrews, C.G. Townsend, H.-J. Miesner, D.S. Durfee, D.M. Kurn, W. Ketterle, Observation of interference between two Bose condensates. Science 275, 637–641 (1997)

    Article  Google Scholar 

  • H. Araki, On quasifree states of CAR and bogoliubov automorphisms. Publ. Res. Inst. Math. Sci. 6, 385–442 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  • H. Araki, D.E. Evans, On a C*-algebra approach to phase transition in the two-dimensional Ising model. Commun. Math. Phys. 91, 489–503 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • S. Armstrong, J.-F. Morizur, J. Janousek, B. Hage, N. Treps, P.K. Lam, H.-A. Bachor, Programmable multimode quantum networks. Nat. Commun. 3, 1026 (2012)

    Article  Google Scholar 

  • A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288 (1986)

    Article  ADS  Google Scholar 

  • H. Baker, Alternants and continuous groups. Proc. Lond. Math. Soc. 3(2), 24–27 (1905)

    Article  MathSciNet  MATH  Google Scholar 

  • K. Banaszek, K. Wódkiewicz, Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation. Phys. Rev. A 58, 4345–4347 (1998)

    Article  ADS  Google Scholar 

  • K. Banaszek, K. Wódkiewicz, Testing quantum nonlocality in phase space. Phys. Rev. Lett. 82, 2009–2013 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J.-L. Basdevant, J. Dalibard, Quantum Mechanics (Springer, Berlin, 2002)

    MATH  Google Scholar 

  • F. Benatti, M. Fannes, R. Floreanini, D. Petritis, Quantum Information, Computation and Cryptography: An Introductory Survey of Theory, Technology and Experiments (Springer Science & Business Media, Berlin, 2010)

    Google Scholar 

  • R. Bhatia, Positive Definite Matrices (Princeton University Press, Princeton, 2007)

    MATH  Google Scholar 

  • I. Bloch, Ultracold quantum gases in optical lattices. Nat. Phys. 1, 23–30 (2005)

    Article  Google Scholar 

  • I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  • O. Bohigas, S. Tomsovic, D. Ullmo, Manifestations of classical phase space structures in quantum mechanics. Phys. Rep. 223, 43–133 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  • S.N. Bose, Plancks Gesetz und Lichtquantenhypothese, Z. Phys. 26, 178–181 (1924)

    Google Scholar 

  • O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics, vol. 1 (Springer, Berlin, 1987)

    Book  MATH  Google Scholar 

  • O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics Equilibrium States. Models in Quantum Statistical Mechanics (Springer, Berlin, 1997)

    Chapter  MATH  Google Scholar 

  • S.L. Braunstein, Squeezing as an irreducible resource. Phys. Rev. A 71, 055801 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007)

    Chapter  MATH  Google Scholar 

  • Y. Cai, J. Roslund, G. Ferrini, F. Arzani, X. Xu, C. Fabre, N. Treps, Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun. 8, 15645 EP (2017)

    Article  ADS  Google Scholar 

  • J.E. Campbell, On a law of combination of operators bearing on the theory of continuous transformation groups. Proc. Lond. Math. Soc. 28, 381–390 (1897)

    MathSciNet  MATH  Google Scholar 

  • M. Chen, N.C. Menicucci, O. Pfister, Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Phys. Rev. Lett. 112, 120505 (2014)

    Article  ADS  Google Scholar 

  • T.-P. Cheng, L.-F. Li, Gauge Theory of Elementary Particle Physics (Oxford Science Publications, Clarendon Press, Oxford University Press, Oxford [Oxfordshire], New York, 1984)

    Google Scholar 

  • A. Chenu, A.M. Brańczyk, G.D. Scholes, J.E. Sipe, Thermal light cannot be represented as a statistical mixture of single pulses. Phys. Rev. Lett. 114, 213601 (2015)

    Article  ADS  Google Scholar 

  • S. Chu, J.E. Bjorkholm, A. Ashkin, A. Cable, Experimental observation of optically trapped atoms. Phys. Rev. Lett. 57, 314–317 (1986)

    Article  ADS  Google Scholar 

  • J.B. Conway, A Course in Functional Analysis. Graduate Texts in Mathematics, vol. 96, 2nd edn. (Springer, New York, 1997)

    Google Scholar 

  • J.F. Corney, M.K. Olsen, Non-Gaussian pure states and positive Wigner functions. Phys. Rev. A 91, 023824 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • J. Dalibard, C. Cohen-Tannoudji, Dressed-atom approach to atomic motion in laser light: the dipole force revisited. J. Opt. Soc. Am. B 2, 1707 (1985)

    Article  ADS  Google Scholar 

  • J. Dalibard, C. Cohen-Tannoudji, Laser cooling below the Doppler limit by polarization gradients: simple theoretical models. J. Opt. Soc. Am. B 6, 2023 (1989)

    Article  ADS  Google Scholar 

  • K.R. Davidson, C*-Algebras by Example. Fields Institute Monographs, vol. 6 (American Mathematical Society, Providence, 1996)

    Google Scholar 

  • E.B. Davies, Irreversible dynamics of infinite fermion systems. Commun. Math. Phys. 55, 231–258 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

    Article  ADS  Google Scholar 

  • A.M.O. de Almeida, The Weyl representation in classical and quantum mechanics. Phys. Rep. 295, 265–342 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  • G.J. De Valcarcel, G. Patera, N. Treps, C. Fabre, Multimode squeezing of frequency combs. Phys. Rev. A 74, 061801 (2006)

    Article  ADS  Google Scholar 

  • J. Dereziński, Introduction to representations of the canonical commutation and anticommutation relations, in Large Coulomb Systems, ed. by J.D.P. Dr, H.S.P. Dr. Lecture Notes in Physics, vol. 695 (Springer, Berlin, 2006), pp. 63–143

    Google Scholar 

  • B. Dierckx, M. Fannes, M. Pogorzelska, Fermionic quasifree states and maps in information theory. J. Math. Phys. 49, 032109 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J.D. Dixon, B. Mortimer, Permutation Groups. Graduate Texts in Mathematics, vol. 163 (Springer, New York, 1996)

    Book  MATH  Google Scholar 

  • A. Einstein, Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung, in Albert Einstein: Akademie-Vorträge, ed. by E.D. Simon (Wiley-VCH Verlag GmbH & Co. KGaA, 2005), pp. 245–257

    Chapter  Google Scholar 

  • T. Engl, J. Dujardin, A. Argüelles, P. Schlagheck, K. Richter, J.D. Urbina, Coherent backscattering in Fock space: a signature of quantum many-body interference in interacting bosonic systems. Phys. Rev. Lett. 112, 140403 (2014)

    Article  ADS  Google Scholar 

  • D.E. Evans, Y. Kawahigashi, Quantum Symmetries on Operator Algebras. Oxford Mathematical Monographs (Clarendon Press, Oxford, 1998)

    Google Scholar 

  • M. Fannes, A. Verbeure, Gauge transformations and normal states of the CCR. J. Math. Phys. 16, 2086–2088 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • G. Ferrini, J.P. Gazeau, T. Coudreau, C. Fabre, N. Treps, Compact Gaussian quantum computation by multi-pixel homodyne detection. New J. Phys. 15, 093015 (2013)

    Article  ADS  Google Scholar 

  • W. Fulton, Young Tableaux: With Applications to Representation Theory and Geometry. London Mathematical Society Student Texts, vol. 35 (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  • T.A. Fulton, G.J. Dolan, Observation of single-electron charging effects in small tunnel junctions. Phys. Rev. Lett. 59, 109–112 (1987)

    Article  ADS  Google Scholar 

  • S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, C. Fabre, Full multipartite entanglement of frequency-comb Gaussian states. Phys. Rev. Lett. 114, 050501 (2015)

    Article  ADS  Google Scholar 

  • R.J. Glauber, Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963a)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R.J. Glauber, The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963b)

    Article  ADS  MathSciNet  Google Scholar 

  • N. Goldman, J. Dalibard, Periodically driven quantum systems: effective Hamiltonians and engineered gauge fields. Phys. Rev. X 4, 031027 (2014)

    Google Scholar 

  • D. Griffiths, Introduction to Elementary Particles (WILEY-VCH, Weinheim, 2004)

    MATH  Google Scholar 

  • G. Grynberg, A. Aspect, C. Fabre, Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light (Cambridge University Press, Cambridge, 2010)

    Book  MATH  Google Scholar 

  • M. Hamermesh, Group Theory and Its Application to Physical Problems. Dover Books on Physics and Chemistry (Dover Publications, New York, 1989)

    Google Scholar 

  • W. Hänsel, P. Hommelhoff, T.W. Hänsch, J. Reichel, Bose-Einstein condensation on a microelectronic chip. Nature 413, 498–501 (2001)

    Article  ADS  Google Scholar 

  • F. Hausdorff, Die symbolische Exponentialformel in der Gruppentheorie. Leipz. Berichte 58, 19–48 (1906)

    MATH  Google Scholar 

  • W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927)

    Article  ADS  MATH  Google Scholar 

  • E.J. Heller, Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits Phys. Rev. Lett. 53, 1515–1518 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  • J. Helsen, Structure of coherent fermionic states. Master thesis, KU Leuven, Leuven, 2015

    Google Scholar 

  • A. Hemmerich, T.W. Hänsch, Two-dimesional atomic crystal bound by light. Phys. Rev. Lett. 70, 410–413 (1993)

    Article  ADS  Google Scholar 

  • A.S. Holevo, Statistical Structure of Quantum Theory (Springer Science & Business Media, Berlin, 2001)

    Book  MATH  Google Scholar 

  • C.K. Hong, Z.Y. Ou, L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987)

    Article  ADS  Google Scholar 

  • R.A. Horn, C.R. Johnson, Matrix Analysis, 23rd edn. (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  • R. Hudson, When is the wigner quasi-probability density non-negative? Rep. Math. Phys. 6, 249–252 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • K. Husimi, Some formal properties of the density matrix. J. Phys. Soc. Jpn. 22, 264–314 (1940)

    MATH  Google Scholar 

  • P. Jordan, E. Wigner, Über das Paulische äquivalenzverbot. Z. Phys. 47, 631–651 (1928)

    Article  ADS  MATH  Google Scholar 

  • P. Kapitza, Viscosity of liquid helium below the \(\lambda \)-point. Nature 141, 74–74 (1938)

    Article  ADS  Google Scholar 

  • M. Kardar, Statistical Physics of Particles (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  • M. Karski, L. Förster, J.-M. Choi, A. Steffen, W. Alt, D. Meschede, A. Widera, Quantum walk in position space with single optically trapped atoms. Science 325, 174–177 (2009)

    Article  ADS  Google Scholar 

  • E.H. Kennard, Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys. 44, 326–352 (1927)

    Article  ADS  MATH  Google Scholar 

  • T. Kiesel, W. Vogel, Nonclassicality filters and quasiprobabilities. Phys. Rev. A 82, 032107 (2010)

    Article  ADS  Google Scholar 

  • L. Landau, Theory of the superfluidity of helium II. Phys. Rev. 60, 356–358 (1941)

    Article  ADS  MATH  Google Scholar 

  • R.B. Laughlin, Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983)

    Article  ADS  Google Scholar 

  • P. Leboeuf, M. Saraceno, Eigenfunctions of non-integrable systems in generalised phase spaces. J. Phys. A: Math. Gen. 23, 1745 (1990)

    Article  ADS  Google Scholar 

  • P.D. Lett, R.N. Watts, C.I. Westbrook, W.D. Phillips, P.L. Gould, H.J. Metcalf, Observation of atoms laser cooled below the Doppler limit. Phys. Rev. Lett. 61, 169–172 (1988)

    Article  ADS  Google Scholar 

  • F. London, The \(\lambda \)-phenomenon of liquid helium and the Bose-Einstein degeneracy. Nature 141, 643–644 (1938)

    Article  ADS  Google Scholar 

  • H. Maassen, Quantum probability and quantum information theory, in Quantum Information, Computation and Cryptography, ed. by F. Benatti, M. Fannes, R. Floreanini, D. Petritis. Lecture Notes in Physics, vol. 808 (Springer, Berlin, 2010), pp. 65–108. https://doi.org/10.1007/978-3-642-11914-9_3

    Google Scholar 

  • L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  • O. Mandel, M. Greiner, A. Widera, T. Rom, T.W. Hänsch, I. Bloch, Coherent transport of neutral atoms in spin-dependent optical lattice potentials. Phys. Rev. Lett. 91, 010407 (2003)

    Article  ADS  Google Scholar 

  • A. Mandilara, E. Karpov, N.J. Cerf, Extending Hudson’s theorem to mixed quantum states. Phys. Rev. A 79, 062302 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • J. Manuceau, C*-algèbre de relations de commutation. Annales de l’I.H.P. Physique théorique 8, 139–161 (1968)

    Google Scholar 

  • J. Manuceau, A. Verbeure, Quasi-free states of the $C.C.R.$–algebra and Bogoliubov transformations. Commun. Math. Phys. 9, 293–302 (1968)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • P.A. Martin, Physique Statistique des Processus Irreversibles (Lecture Notes) (2004)

    Google Scholar 

  • C.L. Mehta, Diagonal coherent-state representation of quantum operators. Phys. Rev. Lett. 18, 752–754 (1967)

    Article  ADS  Google Scholar 

  • C.L. Mehta, E.C.G. Sudarshan, Relation between quantum and semiclassical description of optical coherence. Phys. Rev. 138, B274–B280 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  • B.J. Metcalf, N. Thomas-Peter, J.B. Spring, D. Kundys, M.A. Broome, P.C. Humphreys, X.-M. Jin, M. Barbieri, W. Steven Kolthammer, J.C. Gates, B.J. Smith, N.K. Langford, P.G.R. Smith, I.A. Walmsley, Multiphoton quantum interference in a multiport integrated photonic device. Nat. Commun. 4, 1356 (2013)

    Article  Google Scholar 

  • W.H. Miller, On the relation between the semiclassical initial value representation and an exact quantum expansion in time-dependent coherent states. J. Phys. Chem. B 106, 8132–8135 (2002)

    Article  Google Scholar 

  • C. Moore, S. Mertens, The Nature of Computation (Oxford University Press, Oxford, 2011)

    Google Scholar 

  • P.J. Mosley, J.S. Lundeen, B.J. Smith, P. Wasylczyk, A.B. U’Ren, C. Silberhorn, I.A. Walmsley, Heralded generation of ultrafast single photons in pure quantum states. Phys. Rev. Lett. 100, 133601 (2008)

    Google Scholar 

  • N.F. Mott, The basis of the electron theory of metals, with special reference to the transition metals. Proc. Phys. Soc. A 62, 416 (1949)

    Article  ADS  Google Scholar 

  • J.E. Moyal, Quantum mechanics as a statistical theory. Math. Proc. Camb. 45, 99–124 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Neumark, On a representation of additive operator set functions. C. R. (Dokl.) Acad. Sci. URSS 41, 359–361 (1943)

    Google Scholar 

  • C. Orzel, A.K. Tuchman, M.L. Fenselau, M. Yasuda, M.A. Kasevich, Squeezed states in a Bose-Einstein condensate. Science 291, 2386–2389 (2001)

    Article  ADS  Google Scholar 

  • B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G.V. Shlyapnikov, T.W. Hänsch, I. Bloch, Tonks-Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004)

    Article  ADS  Google Scholar 

  • J. Park, J. Zhang, J. Lee, S.-W. Ji, M. Um, D. Lv, K. Kim, H. Nha, Testing nonclassicality and non-Gaussianity in phase space. Phys. Rev. Lett. 114, 190402 (2015)

    Article  ADS  Google Scholar 

  • W. Pauli, The connection between spin and statistics. Phys. Rev. 58, 716–722 (1940)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • W. Pauli, On the connection between spin and statistics. Prog. Theor. Phys. 5, 526–543 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  • G.K. Pedersen, Analysis Now (Springer, New York, 1989)

    Book  MATH  Google Scholar 

  • A. Peruzzo, M. Lobino, J.C.F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M.G. Thompson, J.L. OBrien, Quantum walks of correlated photons. Science 329, 1500–1503 (2010)

    Article  ADS  Google Scholar 

  • D. Petz, An Invitation to the Algebra of Canonical Commutation Relations. Leuven Notes in Mathematical and Theoretical Physics Series A, vol. 2 (Leuven University Press, Leuven, 1990)

    Google Scholar 

  • W.D. Phillips, H. Metcalf, Laser deceleration of an atomic beam. Phys. Rev. Lett. 48, 596–599 (1982)

    Article  ADS  Google Scholar 

  • Y.-S. Ra, M.C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, Y.-H. Kim, Nonmonotonic quantum-to-classical transition in multiparticle interference. PNAS 110, 1227–1231 (2013a)

    Article  ADS  Google Scholar 

  • Y.-S. Ra, M.C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, Y.-H. Kim, Observation of detection-dependent multi-photon coherence times. Nat. Commun. 4, 2451 (2013b)

    Google Scholar 

  • Y.-S. Ra, C. Jacquard, A. Dufour, C. Fabre, N. Treps, Tomography of a mode-tunable coherent single-photon subtractor. Phys. Rev. X 7, 031012 (2017)

    Google Scholar 

  • H.P. Robertson, The uncertainty principle. Phys. Rev. 34, 163–164 (1929)

    Article  ADS  Google Scholar 

  • D.W. Robinson, A theorem concerning the positive metric. Commun. Math. Phys. 1, 89–94 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J. Roslund, R.M. de Araújo, S. Jiang, C. Fabre, N. Treps, Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photonics8, 109–112 (2014)

    Article  ADS  Google Scholar 

  • L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502 (2012)

    Article  ADS  Google Scholar 

  • W. Schleich, Quantum Optics in Phase Space (Wiley-VCH, Berlin, 2001)

    Book  MATH  Google Scholar 

  • E. Schrödinger, Der stetige übergang von der Mikro- zur Makromechanik. Naturwissenschaften 14, 664–666 (1926a)

    Article  ADS  MATH  Google Scholar 

  • J. Schwinger, The theory of quantized fields. I. Phys. Rev. 82, 914–927 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  • J. Slawny, On factor representations and theC*-algebra of canonical commutation relations. Commun. Math. Phys. 24, 151–170 (1972)

    Article  ADS  MATH  Google Scholar 

  • F. Soto, P. Claverie, When is the Wigner function of multidimensional systems nonnegative? J. Math. Phys. 24, 97–100 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  • W. Stinespring, Positive functions on C*-algebras. Proc. Am. Math. Soc. 6, 211 (1955)

    MathSciNet  MATH  Google Scholar 

  • M.H. Stone, Linear transformations in Hilbert space: III. Operational methods and group theory. PNAS 16, 172–175 (1930)

    Article  ADS  MATH  Google Scholar 

  • M.H. Stone, On one-parameter unitary groups in Hilbert space. Ann. Math. 33, 643 (1932)

    Article  MathSciNet  MATH  Google Scholar 

  • X. Su, Y. Zhao, S. Hao, X. Jia, C. Xie, K. Peng, Experimental preparation of eight-partite cluster state for photonic qumodes. Opt. Lett. 37, 5178–5180 (2012)

    Article  ADS  Google Scholar 

  • E.C.G. Sudarshan, Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277–279 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M.C. Tichy, M. Tiersch, F. de Melo, F. Mintert, A. Buchleitner, Zero-transmission law for multiport beam splitters. Phys. Rev. Lett. 104, 220405 (2010)

    Article  ADS  Google Scholar 

  • M.C. Tichy, H.-T. Lim, Y.-S. Ra, F. Mintert, Y.-H. Kim, A. Buchleitner, Fourphoton indistinguishability transition. Phys. Rev. A 83, 062111 (2011)

    Article  ADS  Google Scholar 

  • M.C. Tichy, F. de Melo, M. Kuś, F. Mintert, A. Buchleitner, Entanglement of identical particles and the detection process. Fortschr. Phys. 61, 225–237 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • A. Verbeure, Many-Body Boson Systems: Half a Century Later, Theoretical and Mathematical Physics (Springer, London, 2011)

    Book  MATH  Google Scholar 

  • J. von Neumann, Die Eindeutigkeit der Schrödingerschen Operatoren. Math. Ann. 104, 570–578 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  • J. von Neumann, Über Einen Satz Von Herrn M. H. Stone. Ann. Math. 33, 567 (1932)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Walschaers, Counting messages of quantum sources. Master thesis, KU Leuven, 2011

    Google Scholar 

  • M. Walschaers, C. Fabre, V. Parigi, N. Treps, Entanglement and wigner function negativity of multimode non-gaussian states. Phys. Rev. Lett. 119, 183601 (2017)

    Article  ADS  Google Scholar 

  • H. Weyl, Gruppentheorie und Quantenmechanik (Hirzel, Leipzig, 1928)

    MATH  Google Scholar 

  • J.-I. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, A. Furusawa, Invited article: generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing. APL Photonics 1, 060801 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Walschaers .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walschaers, M. (2018). Describing Many-Particle Quantum Systems. In: Statistical Benchmarks for Quantum Transport in Complex Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-93151-7_7

Download citation

Publish with us

Policies and ethics