Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In Sect. 1.1, we introduced the field of quantum transport theory and more specifically discussed the influence of quantum interference effects on transport phenomena. The present chapter, based on Walschaers et al. (2013, 2015), presents the first results of this dissertation, which fit into that framework.

Chaos isn’t a pit. Chaos is a ladder

Lord Petyr Baelish, played by Aidan Gillen in “Game of Thrones” (Sakharov 2013)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although there is literature on several of such light harvesting complexes, the clearest results were obtained for the FMO complex, e.g. in Engel et al. (2007). It is, however, not obvious that these results can be extrapolated to all types of light harvesting complexes, as we discuss in Chap. 6.

  2. 2.

    We introduce the standard mathematics notation \(\lceil .\rceil \) for rounding up and \(\lfloor .\rfloor \) for rounding down. For example \(\lceil 1.1\rceil = 2\) and \(\lfloor 1.9\rfloor =1\)

  3. 3.

    The factor two enhancement, as compared to the typical 1 / N, obtained for \(n=1\) is more closely related to coherent backscattering, since it is a manifestation of weak localisation.

  4. 4.

    One retrieves the semicircle, but should incorporate finite size corrections for small N.

  5. 5.

    The quantum recurrence theorem (Bocchieri and Loinger 1957) implies that for any state vector \(\psi \in \mathcal {H}\), any one-parameter group \(\{U_t \mid t \in \mathbb {R} \}\) and any \(\epsilon > 0\), there is a time \(t_0 > 0\) such that \(||(\mathbb {1} - U_{t_0})\left| \psi \right\rangle || < \epsilon \). However, note that this does not imply periodicity.

  6. 6.

    Using the exchange operator which is later defined in (4.46), we can make this reasoning more rigorous by noting that \(e^{-it_0H}e^{i\theta }\left| \mathrm out\right\rangle = e^{-it_0H}e^{i\theta }J\left| \mathrm in\right\rangle \underset{[H,J]=0}{=} J e^{-it_0H}e^{i\theta }\left| \mathrm in\right\rangle \underset{(4.39)}{=} e^{2i\theta } J \left| \mathrm out\right\rangle \underset{(4.47)}{=} e^{2i\theta } \left| \mathrm in\right\rangle \).

  7. 7.

    Which fixes a state’s parity.

  8. 8.

    This is equivalent to sampling the Hamiltonian in the site basis, with

    figure a

    while explicitly fixing \(H_{i\, j}=H_{i\, N-j+1}=H_{N-i+1\, j}=H_{N-i+1\, N-j+1j}\).

  9. 9.

    This symmetric behaviour on the time axis is quantified by \(\left|\left\langle e_i,e^{-i t H} \mathrm{in} \right\rangle \right|^2 = \left|\left\langle e_i,e^{-i t H} J^2 \mathrm{in} \right\rangle \right|^2 = \left|\left\langle J\, e_i,e^{-i t H} \mathrm{out} \right\rangle \right|^2 \approx \left|\left\langle J\, e_i,e^{-i (t + t_0) H} \mathrm{in} \right\rangle \right|^2\), where we explicitly use that there is a time \(t_0\) for which \(e^{- i t_0 H}\left| \mathrm in\right\rangle \approx e^{i \theta } \left| \mathrm out\right\rangle \). Moreover, an additional symmetry around \(t_0/2\) is implied, which follows from \(\left|\left\langle \mathrm{out},e^{-i t H} \mathrm{in} \right\rangle \right|^2 \approx \left|\left\langle e^{- i t_0 H} \mathrm{in},e^{-i t H} \mathrm{in} \right\rangle \right|^2 =\left|\left\langle e^{- i (t_0 - t) H} \mathrm{in},\mathrm{in} \right\rangle \right|^2 = \left|\overline{\left\langle \mathrm{in}, e^{- i (t_0 - t) H} \mathrm{in} \right\rangle }\right|^2 = \left|\left\langle \mathrm{in}, e^{- i (t_0 - t) H} \mathrm{in} \right\rangle \right|^2 \).

  10. 10.

    Or, rather, the paradigmatic double-well potential.

  11. 11.

    Throughout the remainder of this chapter, the terms “first passage time” and “transfer time” are therefore used interchangeably.

  12. 12.

    We do notice that finite size effects slightly alter the prediction of Eq. (4.93), resulting for example in an actual \(\alpha '\approx 0.93\), obtained by numerics, instead of the analytically predicted \(\alpha '=0.95\) both for \(N=20\), \(\xi =2\) and \(\chi =0.0656234\).

  13. 13.

    Due to the subtlety of the argument, the phrasing is delicate, hence the wording here is similar to that of Walschaers et al. (2015).

  14. 14.

    We warn the reader that throughout the text \(\tau \) is used as a stochastic quantity, which may make definition (4.101) somewhat misleading.

  15. 15.

    Given that a stochastic variable X is normally distributed, the distribution of \(\left|X\right|\) is called a half-normal (if \(\mathbb {E}(X)=0\)) or folded normal distribution (Leone et al. 1961). The terminology refers to the fact that the negative part of the probability distribution is literally folded to the positive side.

  16. 16.

    All our attempts resulted in page-long expressions which were neither useful nor insightful.

  17. 17.

    We use the property that \(x=e^{\log x}\), which implies that \(f(V')= \frac{1}{N}\log \left( e^{-{V'}^2} \left( \text {erfc}\left( V'\right) \right) ^{\frac{N}{2}-1} V'\right) \).

  18. 18.

    Where \(\chi /\sqrt{N}\) is the typical (RMS) coupling between the input/output and the intermediate sites, and \(\xi /\sqrt{N}\) denotes the typical (RMS) coupling strength between the intermediate sites.

  19. 19.

    This is also consistent with the physical idea behind the CAT mechanism: The coupling to a second chaotic (hence modelled by the GOE Bohigas et al. 1993) degree of freedom (here the randomly interacting intermediate sites, where the randomness comes from conformational changes in the macromolecular arrangement, in particular mimicking vibrational background degrees of freedom) enhances the tunnelling rate in a donor-acceptor system with vanishing direct coupling (Tomsovic and Ullmo 1994).

  20. 20.

    Whether more efficient light harvesting is (or has ever been) evolutionarily beneficial (and to what extent) remains an open question. There is a chance that the answer to this question depends on the organism and even on its ecosystem.

  21. 21.

    Due to the centrosymmetry we only consider even numbers of sites N. Moreover, \(N=2\) implies there are no intermediate sites and thus we obtain the benchmark system.

  22. 22.

    Note that we use “\(\mathrm{cte}\)” to indicate an unspecified constant.

  23. 23.

    Note that large densities of sites translate in many contributing energy levels in the perturbative series.

  24. 24.

    Relevant network sizes in photosynthesis are of the order \(N\sim 10\) (Blankenship 2002).

  25. 25.

    We here employ either the algorithm which was also used in Scholak et al. (2011a), Scholak (2011) or the NMaximize routine in Mathematica.

  26. 26.

    Clock speed of 2.6 GHz, 8x256 KB of level 2 cache and 20 MB level 3 cache. All demanding computations, i.e. those that cannot be done on a normal laptop, were done on the bwGRiD.

  27. 27.

    There is a much higher density of dominant doublet realisations in the centrosymmetric GOE than in the standard GOE.

  28. 28.

    Common acronym to denote the community studying atomic, molecular, and optical physics.

  29. 29.

    This provides a natural connection to the random matrix theory of many-particle systems.

  30. 30.

    Whether the proposed mechanism can also be implemented in such systems is of course a very different question.

References

  • M. Abramowitz, I. Stegan, Handbook of Mathematical Functions (Dover Publications, Mineola, 1965)

    Google Scholar 

  • E. Akkermans, Mesoscopic Physics of Electrons and Photons (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  • R. Alicki, Quantum Dynamical Semigroups and Applications, 2nd edn. (Springer Science & Business Media, Berlin, 1987)

    MATH  Google Scholar 

  • H.V. Amerongen, L. Valkunas, R.V. Grondelle, Photosynthetic Excitons (World Scientific, Singapore, 2000)

    Google Scholar 

  • N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976)

    MATH  Google Scholar 

  • C.J. Bardeen, The structure and dynamics of molecular excitons. Annu. Rev. Phys. Chem. 65, 127–148 (2014)

    Article  ADS  Google Scholar 

  • S. Barnett, Matrices: Methods and Applications, Oxford Applied Mathematics and Computing Science Series (Clarendon Press, Oxford University Press, Oxford [England], New York, 1990)

    MATH  Google Scholar 

  • N. Biggs, Algebraic Graph Theory, 2nd edn. Cambridge Mathematical Library (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  • R.E. Blankenship, Molecular Mechanisms of Photosynthesis (Blackwell Science, Oxford, 2002)

    Book  Google Scholar 

  • P. Bocchieri, A. Loinger, Quantum recurrence theorem. Phys. Rev. 107, 337–338 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  • O. Bohigas, S. Tomsovic, D. Ullmo, Manifestations of classical phase space structures in quantum mechanics. Phys. Rep. 223, 43–133 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  • H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007)

    Chapter  Google Scholar 

  • O. Brodier, P. Schlagheck, D. Ullmo, Resonance-assisted tunneling. Ann. Phys. 300, 88–136 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  • P. Bunyk, E. Hoskinson, M. Johnson, E. Tolkacheva, F. Altomare, A. Berkley, R. Harris, J. Hilton, T. Lanting, A. Przybysz, J. Whittaker, Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Trans. Appl. Supercond. 24, 1–10 (2014)

    Article  Google Scholar 

  • A. Cantoni, P. Butler, Eigenvalues and eigenvectors of symmetric centrosymmetric matrices. Linear Algebra Appl. 13, 275–288 (1976)

    Article  MathSciNet  Google Scholar 

  • A. Chabchoub, M. Fink, Time-reversal generation of rogue waves. Phys. Rev. Lett. 112, 124101 (2014)

    Article  ADS  Google Scholar 

  • A.M. Childs, Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • M. Christandl, N. Datta, A. Ekert, A.J. Landahl, Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)

    Article  ADS  Google Scholar 

  • M. Christandl, N. Datta, T.C. Dorlas, A. Ekert, A. Kay, A.J. Landahl, Perfect transfer of arbitrary states in quantum spin networks. Phys. Rev. A 71, 032312 (2005)

    Article  ADS  Google Scholar 

  • P.J. Davis, Circulant Matrices. Pure and Applied Mathematics (Wiley, New York, 1979)

    Google Scholar 

  • C. Dembowski, H.-D. Gräf, A. Heine, R. Hofferbert, H. Rehfeld, A. Richter, First experimental evidence for chaos-assisted tunneling in a microwave annular billiard. Phys. Rev. Lett. 84, 867–870 (2000)

    Article  ADS  Google Scholar 

  • B. Derrida, Y. Pomeau, Random networks of automata: a simple annealed approximation. EPL 1, 45 (1986)

    Article  ADS  Google Scholar 

  • G.S. Engel, T.R. Calhoun, E.L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R.E. Blankenship, G.R. Fleming, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007)

    Article  ADS  Google Scholar 

  • G. Ergün, Y.V. Fyodorov, Level curvature distribution in a model of two uncoupled chaotic subsystems. Phys. Rev. E 68, 046124 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • E.F. Fama, R. Roll, Some properties of symmetric stable distributions. JASA 63, 817–836 (1968)

    MathSciNet  Google Scholar 

  • E. Farhi, S. Gutmann, Quantum computation and decision trees. Phys. Rev. A 58, 915–928 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  • M. Frazier, B. Taddese, T. Antonsen, S.M. Anlage, Nonlinear time reversal in a wave chaotic system. Phys. Rev. Lett. 110, 063902 (2013)

    Article  ADS  Google Scholar 

  • P. Gaspard, Quantum chaotic scattering. Scholarpedia 9, 9806 (2014)

    Article  ADS  Google Scholar 

  • F. Haake, QuantumSignatures of Chaos, vol. 54 (Springer Science & Business Media, Berlin, 2010)

    MATH  Google Scholar 

  • F. Haake, K. Życzkowski, Random-matrix theory and eigenmodes of dynamical systems. Phys. Rev. A 42, 1013–1016 (1990)

    Article  ADS  Google Scholar 

  • H. Haken, Quantum Field Theory of Solids: An Introduction (North-Holland Pub. Co, Amsterdam, New York, 1976)

    Google Scholar 

  • C.S. Hamilton, R. Kruse, L. Sansoni, C. Silberhorn, I. Jex, Driven quantum walks. Phys. Rev. Lett. 113, 083602 (2014)

    Article  ADS  Google Scholar 

  • B. Hein, G. Tanner, Quantum search algorithms on a regular lattice. Phys. Rev. A 82, 012326 (2010)

    Article  ADS  Google Scholar 

  • F.B. Hildebrand, Introduction to Numerical Analysis, 2nd edn. (Dover Publications, New York, 1987)

    Google Scholar 

  • Y. Imry, Introduction to Mesoscopic Physics (Oxford University Press, Oxford, 2009)

    Google Scholar 

  • A. Kay, Perfect state transfer: Beyond nearest-neighbor couplings. Phys. Rev. A 73, 032306 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, Hoboken, NJ, 2005)

    Google Scholar 

  • C. Kittel, C.Y. Fong, Quantum Theory of Solids, 2nd edn. (Wiley, New York, 1987)

    Google Scholar 

  • V.F. Krotov, Global methods in optimal control theory, in Advances in Nonlinear Dynamics and Control: A Report from Russia, ed. by A.B. Kurzhanski. Progress in Systems and Control Theory, vol. 17 (Birkhäuser, Boston, 1993), pp. 74–121. https://doi.org/10.1007/978-1-4612-0349-0_3

  • I. Kuprov, Spin system trajectory analysis under optimal control pulses. J. Mag. Reson. 233, 107–112 (2013)

    Article  ADS  Google Scholar 

  • T. Lanting, A.J. Przybysz, A.Y. Smirnov, F.M. Spedalieri, M.H. Amin, A.J. Berkley, R. Harris, F. Altomare, S. Boixo, P. Bunyk, N. Dickson, C. Enderud, J.P. Hilton, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, R. Neufeld, T. Oh, I. Perminov, C. Rich, M.C. Thom, E. Tolkacheva, S. Uchaikin, A.B. Wilson, G. Rose, Entanglement in a quantum annealing processor. Phys. Rev. X 4, 021041 (2014)

    Google Scholar 

  • P.S. Laplace, Memoir on the probability of the causes of events. Stat. Sci. 1, 364–378 (1986)

    Article  Google Scholar 

  • F.C. Leone, L.S. Nelson, R.B. Nottingham, The folded normal distribution. Technometrics 3, 543–550 (1961)

    Article  MathSciNet  Google Scholar 

  • G. Lerosey, J.D. Rosny, A. Tourin, M. Fink, Focusing beyond the diffraction limit with far-field time reversal. Science 315, 1120–1122 (2007)

    Article  ADS  Google Scholar 

  • F. Leyvraz, D. Ullmo, The level splitting distribution in chaos-assisted tunnelling. J. Phys. A: Math. Gen. 29, 2529 (1996)

    Article  ADS  Google Scholar 

  • R. Loudon, The Quantum Theory of Light, 3rd edn. (Oxford science publications, Oxford University Press, Oxford, New York, 2000)

    Google Scholar 

  • D. Manzano, Quantum transport in networks and photosynthetic complexes at the steady state. PLoS ONE 8, e57041 (2013)

    Article  ADS  Google Scholar 

  • V. May, O. Kühn, Charge and Energy Transfer dynamics in Molecular Systems: A Theoretical Introduction, 1st edn. (Wiley-VCH, Berlin, New York, 2000)

    Google Scholar 

  • S. Mostarda, F. Levi, D. Prada-Gracia, F. Mintert, F. Rao, Structure–dynamics relationship in coherent transport through disordered systems. Nat. Commun. 4 (2013)

    Google Scholar 

  • O. Mülken, A. Blumen, Continuous-time quantum walks: Models for coherent transport on complex networks. Phys. Rep. 502, 37–87 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  • J. Nelson, The Physics of Solar Cells (Imperial College Press, Distributed by World Scientific Publication, River Edge, London, 2003)

    Google Scholar 

  • A. Ortega, M. Vyas, L. Benet, Quantum efficiencies in finite disordered networks connected by many-body interactions: Quantum efficiencies in finite disordered networks. Ann. Phys. 527, 748–756 (2015)

    Article  MathSciNet  Google Scholar 

  • M. Reed, B. Simon, Fourier Analysis, Self-Adjointness, 1st edn. (Academic Press, New York, 1975)

    Google Scholar 

  • J. Roland, N.J. Cerf, Noise resistance of adiabatic quantum computation using random matrix theory. Phys. Rev. A 71, 032330 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • I. Rotter, A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A: Math. Theor. 42, 153001 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • A. Sakharov, The Climb (2013)

    Google Scholar 

  • M. Sarovar, A. Ishizaki, G.R. Fleming, K.B. Whaley, Quantum entanglement in photosynthetic light-harvesting complexes. Nat. Phys. 6, 462–467 (2010)

    Article  ADS  Google Scholar 

  • T. Scholak, Transport and coherence in disordered networks. Ph.D. thesis, Albert-Ludwigs Universität Freiburg, Freiburg, 2011

    Google Scholar 

  • T. Scholak, F. Mintert, T. Wellens, A. Buchleitner, Transport and entanglement, in Biomolecular Systems, ed. by E.R. Weber, M. Thorwart, U. Würfel. Quantum Efficiency in Complex Systems, 1st edn. (Elsevier, Oxford, 2010)

    Google Scholar 

  • T. Scholak, F. de Melo, T. Wellens, F. Mintert, A. Buchleitner, Efficient and coherent excitation transfer across disordered molecular networks. Phys. Rev. E 83, 021912 (2011a)

    Article  ADS  Google Scholar 

  • T. Scholak, T. Wellens, A. Buchleitner, Optimal networks for excitonic energy transport. J. Phys. B: At. Mol. Opt. Phys. 44, 184012 (2011b)

    Article  ADS  Google Scholar 

  • T. Scholak, T. Wellens, A. Buchleitner, The optimization topography of exciton transport. EPL 96, 10001 (2011c)

    Article  ADS  Google Scholar 

  • T. Scholak, T. Wellens, A. Buchleitner, Spectral backbone of excitation transport in ultracold Rydberg gases. Phys. Rev. A 90, 063415 (2014)

    Article  ADS  Google Scholar 

  • H.S. Seung, H. Sompolinsky, N. Tishby, Statistical mechanics of learning from examples. Phys. Rev. A 45, 6056–6091 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  • M. Shapiro, P. Brumer, Principles of the Quantum Control of Molecular Processes (Wiley-Interscience, Hoboken, 2003)

    MATH  Google Scholar 

  • D.A. Steck, W.H. Oskay, M.G. Raizen, Observation of chaos-assisted tunneling between islands of stability. Science 293, 274–278 (2001)

    Article  ADS  Google Scholar 

  • D.S. Steiger, T.F. Rønnow, M. Troyer, Heavy tails in the distribution of time to solution for classical and quantum annealing. Phys. Rev. Lett. 115, 230501 (2015)

    Google Scholar 

  • S. Tomsovic, Chaos-assisted tunnelling in the absence of reflexion symmetry. J. Phys. A: Math. Gen. 31, 9469 (1998)

    Article  ADS  Google Scholar 

  • S. Tomsovic, D. Ullmo, Chaos-assisted tunneling. Phys. Rev. E 50, 145–162 (1994)

    Article  ADS  Google Scholar 

  • M. Walschaers, J.F.-d.-C. Diaz, R. Mulet, A. Buchleitner, Optimally designed quantum transport across disordered networks. Phys. Rev. Lett. 111, 180601 (2013)

    Google Scholar 

  • M. Walschaers, R. Mulet, T. Wellens, A. Buchleitner, Statistical theory of designed quantum transport across disordered networks. Phys. Rev. E 91, 042137 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • G.H. Wannier, The structure of electronic excitation levels in insulating crystals. Phys. Rev. 52, 191–197 (1937)

    Article  ADS  Google Scholar 

  • H.M. Wiseman, G.J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

  • P.-E. Wolf, G. Maret, Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 55, 2696–2699 (1985)

    Article  ADS  Google Scholar 

  • J. Zakrzewski, D. Delande, A. Buchleitner, Ionization via chaos assisted tunneling. Phys. Rev. E 57, 1458–1474 (1998)

    Article  ADS  Google Scholar 

  • T. Zech, Hidden symmetries of quantum transport in photosynthesis. Diploma thesis, Albert-Ludwigs Universität Freiburg, Freiburg, 2013

    Google Scholar 

  • T. Zech, M. Walschaers, T. Scholak, R. Mulet, T. Wellens, A. Buchleitner, Quantum transport in biological functional units: noise, disorder, structure. Fluct. Noise Lett. 12, 1340007 (2013)

    Article  ADS  Google Scholar 

  • T. Zech, R. Mulet, T. Wellens, A. Buchleitner, Centrosymmetry enhances quantum transport in disordered molecular networks. New J. Phys. 16, 055002 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Walschaers .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walschaers, M. (2018). Efficient Transport in Closed Systems. In: Statistical Benchmarks for Quantum Transport in Complex Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-93151-7_4

Download citation

Publish with us

Policies and ethics