Skip to main content

Complex Quantum Systems and Random Matrix Theory

  • Chapter
  • First Online:
Book cover Statistical Benchmarks for Quantum Transport in Complex Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 504 Accesses

Abstract

Complex systems are ubiquitous in a wide variety of scientific disciplines. The terminology is profoundly present in fields ranging from social sciences (Sawyer, Social emergence: societies as complex systems, Cambridge University Press, Cambridge, 2005, Sawyer 2005), over economics (Arthur, Science 284:107–109 1999, Arthur 1999) and neuroscience (Hopfield, PNAS 79:2554–2558, 1982, Hopfield 1982), to engineering (Ottino, Nature 427:399–399, 2004, Ottino 2004), biology (Odum and Barrett, Fundamentals of ecology, Thomson Brooks/Cole, Belmont, 2005, Odum and Barrett 2005) and physics (Richter and Rost, Komplexe Systeme, Fischer-Taschenbuch-Verl, Frankfurt am Main, 2004, Richter and Rost 2004). Given the multitude of different themes considered in these different fields, it is legitimate to wonder whether there are general properties that unify the “complex systems” of these different disciplines.

What... what are these words? Explain! Explain!

Dalek in “Doctor Who” (Hurran 2013)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since patterns can occur over long ranges of data, it is difficult to practically estimate the required measurement time. In the literature, one often assumes that the available string of data is infinitely long (Crutchfield and Young 1989).

  2. 2.

    One may also consider other types of complex networks, but these are the most well-known examples.

  3. 3.

    For an more complete introduction to the genesis of quantum chaos, see (Gutzwiller 2007).

  4. 4.

    The notation \( \overline{A}\) represents the component-wise complex conjugate, rather than the complex transpose. Notice also that \(K^2=\mathbbm {1}\) implies that \(KAK = \overline{A}\).

  5. 5.

    The last step is obtained by a very short “iterative expansion”.

  6. 6.

    This ensemble will not be considered in our subsequent work and thus we refer the reader to (Mehta 2004) for further details.

  7. 7.

    Starting from Eq. (3.22), with \(b=0\), we first note that \(\text{ tr }H^2 = \sum _{i,j} H_{ij}H_{ji}\). Because we consider the GOE \(H_{ij}=H_{ji}\), thus we find that \(\text{ tr }H^2 = \sum _i {H_{ii}}^2 + 2\sum _{i>j} {H_{ij}}^2\). Inserting this in (3.22) leads to \(P(H_{11}, \dots , H_{NN}) = c \prod _i \exp \big ( - a {H_{ii}}^2 \big )\prod _{i>j}\exp \big ( - 2 a {H_{ij}}^2 \big )\). The results (3.25) and (3.26) follow immediately from straightforward integration.

  8. 8.

    This dependence appears via factors \(\left|\left\langle \eta _i,\phi \right\rangle \right|^2\), where \(\phi \) is the state vector of the system and \(\eta _i\) is an eigenvector of the Hamiltonian.

  9. 9.

    This does imply that the notation using the same “P” is somewhat unfortunate, since we are really talking about different functions. Still, to avoid notational overhead, we stick to the P wherever a probability density is treated.

  10. 10.

    This would be similar to sampling the value 0.12345 for a stochastic quantity and trying to use that value to identify the probability distribution from which that value was sampled.

  11. 11.

    Note that this is exactly what is done in (Bohigas et al. 1984), where one considers the local properties the spectra of three different systems to acquire the data presented in this publication’s Fig. 3.1. Another example is (Walschaers 2011), where the density of states of a single, large (\(5000 \times 5000\)) random matrix is sufficient to accurately estimate the Marchenko-Pastur statistics (Marčenko and Pastur 1967).

  12. 12.

    Even though the moments contain all the information about the probability distribution, that does not imply that it is straightforward to find an explicit expression for the probability density function based on the moments.

References

  • M. Abramowitz, I. Stegan, in Handbook of Mathematical Functions (Dover Publications, NY, 1965)

    Google Scholar 

  • G. Akemann, J. Baik, P.D. Francesco (eds.) The Oxford Handbook of Random Matrix Theory (Oxford Handbooks in Mathematics, Oxford, 2011)

    Google Scholar 

  • R. Albert, A.-L. Barabási, Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  • R. Alicki, M. Fannes, Quantum Dynamical Systems (Oxford University Press, Oxford, 2001)

    Google Scholar 

  • W.B. Arthur, Complexity and the economy. Science 284, 107–109 (1999)

    Article  ADS  Google Scholar 

  • E. Atlee Jackson, On the control of complex dynamic systems. Phys. D 50, 341–366 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  • R. Balian, C. Bloch, Distribution of eigenfrequencies for the wave equation in a finite domain. Ann. Phys. 60, 401–447 (1970)

    Article  ADS  Google Scholar 

  • R. Balian, C. Bloch, Distribution of eigenfrequencies for the wave equation in a finite domain. II. Electromagnetic field. Riemannian spaces. Ann. Phys. 64, 271–307 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  • R. Balian, C. Bloch, Distribution of eigenfrequencies for the wave equation in a finite domain: III. Eigenfrequency density oscillations. Ann. Phys. 69, 76–160 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  • R. Balian, C. Bloch, Solution of the Schrödinger equation in terms of classical paths. Ann. Phys. 85, 514–545 (1974)

    Article  ADS  Google Scholar 

  • L.E. Ballentine, Quantum Mechanics: A Modern Development (World Scientific Publishing Company Pte Limited, Singapore, 2014)

    MATH  Google Scholar 

  • A.-L. Barabási, Scale-free networks: a decade and beyond. Science 325, 412–413 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • A.-L. Barabási, R. Albert, Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  • V. Bargmann, Note on Wigner’s theorem on symmetry operations. J. Math. Phys. 5, 862–868 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  • G. Bianconi, A.-L. Barabási, Bose–Einstein condensation in complex networks. Phys. Rev. Lett. 86, 5632–5635 (2001)

    Article  ADS  Google Scholar 

  • N. Biggs, Algebraic Graph Theory. Cambridge Mathematical Library (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  • O. Bohigas, M.J. Giannoni, C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52, 1–4 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  • N. Bohr, I. On the constitution of atoms and molecules. Philos. Mag. 26, 1–25 (1913)

    Article  Google Scholar 

  • N. Bohr, Neutron capture and nuclear constitution. Nature 137, 344–348 (1936)

    Article  ADS  Google Scholar 

  • B. Bollobás, Graphs, groups and matrices, in Modern Graph Theory. Graduate Texts in Mathematics, vol. 184 (Springer, New York, 1998a), pp. 253–293. https://doi.org/10.1007/978-1-4612-0619-4_8

    Chapter  Google Scholar 

  • B. Bollobás, Random graphs, in Modern Graph Theory. Graduate Texts in Mathematics, vol. 184 (Springer, New York, 1998b), pp. 215–252. https://doi.org/10.1007/978-1-4612-0619-4_7

    Chapter  Google Scholar 

  • L. Boltzmann, Zur Theorie der elastischen Nachwirkung. Ann. Phys. 241, 430–432 (1878)

    Article  Google Scholar 

  • M. Born, P. Jordan, Zur Quantenmechanik. Z. Physik 34, 858–888 (1925)

    Article  ADS  Google Scholar 

  • M. Born, W. Heisenberg, P. Jordan, Zur Quantenmechanik. II. Z. Phys. 35, 557–615 (1926)

    Article  ADS  Google Scholar 

  • A.D. Broido, A. Clauset, Scale-free networks are rare (2018). arXiv:1801.03400

  • F.R.K. Chung, Spectral Graph Theory. Regional Conference Series in Mathematics, vol. 92 (Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, Providence, 1997)

    Google Scholar 

  • F. Chung, L. Lu, V. Vu, Spectra of random graphs with given expected degrees. PNAS 100, 6313–6318 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • A. Clauset, C.R. Shalizi, M.E.J. Newman, Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • J.B. Conway, A Course in Functional Analysis. Graduate Texts in Mathematics, vol. 96, 2nd edn. (Springer, New York, 1997)

    Google Scholar 

  • J.P. Crutchfield, K. Young, Inferring statistical complexity. Phys. Rev. Lett. 63, 105–108 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  • P.A.M. Dirac, The fundamental equations of quantum mechanics. Proc. R. Soc. A 109, 642–653 (1925)

    Article  ADS  Google Scholar 

  • B. Eckhardt, E. Aurell, Convergence of the semi-classical periodic orbit expansion. EPL 9, 509 (1989)

    Article  ADS  Google Scholar 

  • S.F. Edwards, R.C. Jones, The eigenvalue spectrum of a large symmetric random matrix. J. Phys. A Math. Gen. 9, 1595 (1976)

    Article  ADS  Google Scholar 

  • A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322, 549–560 (1905)

    Article  Google Scholar 

  • A. Einstein, Zum Quantensatz von Sommerfeld und Epstein. Verhandlungen der Deutschen Physikalischen Gesellschaft 19, 82–92 (1917)

    Google Scholar 

  • P. Erdös, A. Rényi, On the strength of connectedness of a random graph. Acta Math. Hung. 12, 261–267 (1961)

    Article  MathSciNet  Google Scholar 

  • Z. Füredi, J. Komlós, The eigenvalues of random symmetric matrices. Combinatorica 1, 233–241 (1981)

    Article  MathSciNet  Google Scholar 

  • J.W. Gibbs, On the equilibrium of heterogeneous substances. AJS 96, 441–458 (1878)

    MATH  Google Scholar 

  • A.K. Gupta, Beta distribution, in International Encyclopedia of Statistical Science, ed. by M. Lovric (Springer, Berlin, 2011), pp. 144–145

    Chapter  Google Scholar 

  • M.C. Gutzwiller, Phase-integral approximation in momentum space and the bound states of an atom. J. Math. Phys. 8, 1979–2000 (1967)

    Article  ADS  Google Scholar 

  • M.C. Gutzwiller, Phase-integral approximation in momentum space and the bound states of an atom II. J. Math. Phys. 10, 1004–1020 (1969)

    Article  ADS  Google Scholar 

  • M.C. Gutzwiller, Energy spectrum according to classical mechanics. J. Math. Phys. 11, 1791–1806 (1970)

    Article  ADS  Google Scholar 

  • M.C. Gutzwiller, Periodic orbits and classical quantization conditions. J. Math. Phys. 12, 343–358 (1971)

    Article  ADS  Google Scholar 

  • M. Gutzwiller, Quantum chaos. Scholarpedia 2, 3146 (2007)

    Article  ADS  Google Scholar 

  • F. Haake, Quantum Signatures of Chaos, vol. 54 (Springer Science & Business Media, New York, 2010)

    Book  Google Scholar 

  • F. Haake, K. Życzkowski, Random-matrix theory and eigenmodes of dynamical systems. Phys. Rev. A 42, 1013–1016 (1990)

    Article  ADS  Google Scholar 

  • W. Heisenberg, Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z. Phys. 33, 879–893 (1925)

    Article  ADS  Google Scholar 

  • W. Heisenberg, Development of concepts in the history of quantum theory. Am. J. Phys. 43, 389–394 (1975)

    Article  ADS  Google Scholar 

  • H. Hooyberghs, Statistical physics of cooperative phenomena on complex networks. Ph.D thesis, KU Leuven, Leuven, 2013

    Google Scholar 

  • J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities. PNAS 79, 2554–2558 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  • N. Hurran, The Day of the Doctor, 2013

    Google Scholar 

  • M. Kardar, Statistical Physics of Particles (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  • A.N. Kolmogorov, Combinatorial foundations of information theory and the calculus of probabilities. Russ. Math. Surv. 38, 29 (1983)

    Article  MathSciNet  Google Scholar 

  • A.M. Lane, R.G. Thomas, E.P. Wigner, Giant resonance interpretation of the nucleon-nucleus interaction. Phys. Rev. 98, 693–701 (1955)

    Article  ADS  Google Scholar 

  • V.A. Marčenko, L.A. Pastur, Distribution of eigenvalues for some sets of random matrices. Mat. Sb. 1, 457–483 (1967)

    Article  Google Scholar 

  • J.C. Maxwell, On the dynamical theory of gases. Phil. Trans. R. Soc. Lond. 157, 49–88 (1867)

    Article  Google Scholar 

  • M. Mehta, J. Des Cloizeaux, The probabilities for several consecutive eigenvalues of a random matrix. Indian J. Pure Appl. Math. 3, 329–351 (1972)

    Google Scholar 

  • M.L. Mehta, Random Matrices (Elsevier/Academic Press, Amsterdam, 2004)

    MATH  Google Scholar 

  • W.H. Miller, Semiclassical quantization of nonseparable systems: a new look at periodic orbit theory. J. Chem. Phys. 63, 996–999 (1975)

    Article  ADS  Google Scholar 

  • S. Müller, S. Heusler, P. Braun, F. Haake, A. Altland, Semiclassical foundation of universality in quantum chaos. Phys. Rev. Lett. 93, 014103 (2004)

    Article  ADS  Google Scholar 

  • G. Nicolis, P. Gaspard, Toward a probabilistic approach to complex systems. Chaos, Solitons Fractals 4, 41–57 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  • E.P. Odum, G.W. Barrett, Fundamentals of Ecology, 5th edn. (Thomson Brooks/Cole, Belmont, 2005)

    Google Scholar 

  • J.M. Ottino, Engineering complex systems. Nature 427, 399 (2004)

    Article  ADS  Google Scholar 

  • W. Pauli, Über das Modell des Wasserstoffmolekülions. Ann. Phys. 373, 177–240 (1922)

    Article  Google Scholar 

  • C.E. Porter, R.G. Thomas, Fluctuations of nuclear reaction widths. Phys. Rev. 104, 483–491 (1956)

    Article  ADS  Google Scholar 

  • I. Prigogine, Exploring complexity. Eur. J. Oper. Res. 30, 97–103 (1987)

    Article  Google Scholar 

  • K. Richter, J.-M. Rost, Komplexe Systeme, vol. 15550. [Fischer] Fischer kompakt, orig.-ausg., 2. aufl edn. (Fischer-Taschenbuch-Verl, Frankfurt am Main, 2004)

    Google Scholar 

  • R.K. Sawyer, Social Emergence: Societies as Complex Systems (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  • H.G. Schuster, Deterministic Chaos: An Introduction, 1st edn. (VCH, Weinheim, 1989)

    Google Scholar 

  • C.R. Shalizi, J.P. Crutchfield, Computational mechanics: pattern and prediction, structure simplicity. J. Stat. Phys. 104, 817–879 (2001)

    Article  MathSciNet  Google Scholar 

  • C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  • H.-J. Stöckmann, Quantum Chaos: An Introduction (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  • S. Tomsovic, D. Ullmo, Chaos-assisted tunneling. Phys. Rev. E 50, 145–162 (1994)

    Article  ADS  Google Scholar 

  • J.J.M. Verbaarschot, M.R. Zirnbauer, Critique of the replica trick. J. Phys. A Math. Gen. 18, 1093 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  • A. Verbeure, Many-Body Boson Systems: Half a Century Later, Theoretical and Mathematical Physics (Springer, New York, 2011)

    Book  Google Scholar 

  • A. Voros, Unstable periodic orbits and semiclassical quantisation. J. Phys. A Math. Gen. 21, 685 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  • M. Walschaers, Counting messages of quantum sources. Master thesis, KU Leuven, 2011

    Google Scholar 

  • M. Walschaers, R. Mulet, T. Wellens, A. Buchleitner, Statistical theory of designed quantum transport across disordered networks. Phys. Rev. E 91, 042137 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • D.J. Watts, S.H. Strogatz, Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  ADS  Google Scholar 

  • E.P. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren (Vieweg+Teubner Verlag, Wiesbaden, 1931)

    Book  Google Scholar 

  • E.P. Wigner, Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62, 548–564 (1955)

    Article  MathSciNet  Google Scholar 

  • E.P. Wigner, On the distribution of the roots of certain symmetric matrices. Ann. Math. 67, 325–327 (1958)

    Article  MathSciNet  Google Scholar 

  • J. Wishart, The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20A, 32–52 (1928)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Walschaers .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walschaers, M. (2018). Complex Quantum Systems and Random Matrix Theory. In: Statistical Benchmarks for Quantum Transport in Complex Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-93151-7_3

Download citation

Publish with us

Policies and ethics