Skip to main content

Abstract

Cardiovascular disease (CVD) constitutes a major public health problem both in the developed and developing countries. Africa is characterized by a lack of good registries on incidence and mortality of non-communicable diseases (NCDs). Nevertheless, the Global Burden of Disease group, with the data available, showed recently that among the estimated 422 million cases of existing cardiovascular disease in the world in 2015, the age-adjusted higher prevalence of cases were from western and eastern Africa. Specifically, hypertensive heart disease was more prevalent in Africa, and this was accompanied by a higher mortality rate of this condition in this continent compared with other parts of the world.

LMIC are faced with a dual burden of communicable and chronic diseases, which require tertiary care, and a consequent diversion of the limited resources available. In conjunction with the loss of productive years of life, the consequences lead to economic constraints with an impact on both the private and the public sectors. The rising incidence of hypertension in Africa, its high general prevalence and poor control, as well as the premature mortality, makes issues related with hypertension highly relevant for the continent. Various factors have been shown to impact upon the development of left ventricular (LV) hypertrophy (LVH) and LV geometric changes. However, to date, the most consistent explanation for an increased prevalence of LVH and LV geometric remodelling in African populations is a higher pressure load. Bearing in mind the higher prevalence of LVH, especially concentric LVH, in Black Africans, and the higher mortality associated with LVH observed in Black African Americans, it is relevant to discuss issues related with early detection of LVH, intervention for LVH, as well as the consequence of LVH and geometric changes. These issues are paramount in Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roth GA, et al. Global, regional, and National Burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1–25.

    Article  PubMed  PubMed Central  Google Scholar 

  2. World Health Organization. Global status report on noncommunicable diseases, 2010. 2011. p. 176.

    Google Scholar 

  3. Fezeu L, et al. Association between socioeconomic status and adiposity in urban Cameroon. Int J Epidemiol. 2006;35(1):105–11.

    Article  PubMed  Google Scholar 

  4. Kadiri S, Salako BL. Cardiovascular risk factors in middle aged Nigerians. East Afr Med J. 1997;74(5):303–6.

    CAS  PubMed  Google Scholar 

  5. Yusuf S, et al. Global burden of cardiovascular diseases: part II: variations in cardiovascular disease by specific ethnic groups and geographic regions and prevention strategies. Circulation. 2001;104(23):2855–64.

    Article  CAS  PubMed  Google Scholar 

  6. Gaziano TA. Cardiovascular disease in the developing world and its cost-effective management. Circulation. 2005;112(23):3547–53.

    Article  PubMed  Google Scholar 

  7. Donnison CP. Blood pressure in the African natives: its bearing upon aetiology of hyperpiesa and arteriosclerosis. Lancet. 1929;1:6–7.

    Article  Google Scholar 

  8. Ogah OS, Rayner BL. Recent advances in hypertension in sub-Saharan Africa. Heart. 2013;99(19):1390–7.

    Article  PubMed  Google Scholar 

  9. Collaboration, N.C.D.R.F. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet. 2017;389(10064):37–55.

    Article  Google Scholar 

  10. Mills KT, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016;134(6):441–50.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Levy D, et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322(22):1561–6.

    Article  CAS  PubMed  Google Scholar 

  12. Krumholz HM, Larson M, Levy D. Prognosis of left ventricular geometric patterns in the Framingham Heart Study. J Am Coll Cardiol. 1995;25(4):879–84.

    Article  CAS  PubMed  Google Scholar 

  13. Koren MJ, et al. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991;114(5):345–52.

    Article  CAS  PubMed  Google Scholar 

  14. Drazner MH, et al. Left ventricular hypertrophy is more prevalent in blacks than whites in the general population: the Dallas Heart Study. Hypertension. 2005;46(1):124–9.

    Article  CAS  PubMed  Google Scholar 

  15. Kizer JR, et al. Differences in left ventricular structure between black and white hypertensive adults: the Hypertension Genetic Epidemiology Network Study. Hypertension. 2004;43(6):1182–8.

    Article  CAS  PubMed  Google Scholar 

  16. Rodriguez CJ, et al. Left ventricular mass and ventricular remodeling among Hispanic subgroups compared with non-Hispanic blacks and whites: MESA (multi-ethnic study of atherosclerosis). J Am Coll Cardiol. 2010;55(3):234–42.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liao Y, et al. The relative effects of left ventricular hypertrophy, coronary artery disease, and ventricular dysfunction on survival among black adults. JAMA. 1995;273(20):1592–7.

    Article  CAS  PubMed  Google Scholar 

  18. Havranek EP, et al. Left ventricular hypertrophy and cardiovascular mortality by race and ethnicity. Am J Med. 2008;121(10):870–5.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Okin PM, et al. Racial differences in incident heart failure during antihypertensive therapy. Circ Cardiovasc Qual Outcomes. 2011;4(2):157–64.

    Article  PubMed  Google Scholar 

  20. Mancia G, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34(28):2159–219.

    Article  PubMed  Google Scholar 

  21. Chirinos JA, et al. Left ventricular mass: allometric scaling, normative values, effect of obesity, and prognostic performance. Hypertension. 2010;56(1):91–8.

    Article  CAS  PubMed  Google Scholar 

  22. Woodiwiss AJ, Norton GR. Obesity and left ventricular hypertrophy: the hypertension connection. Curr Hypertens Rep. 2015;17(4):539.

    Article  PubMed  CAS  Google Scholar 

  23. Booysen HL, et al. Indexes of aortic pressure augmentation markedly underestimate the contribution of reflected waves toward variations in aortic pressure and left ventricular mass. Hypertension. 2015;65(3):540–6.

    Article  CAS  PubMed  Google Scholar 

  24. Sibiya MJ, et al. Gender-specific contribution of aortic augmentation index to variations in left ventricular mass index in a community sample of African ancestry. Hypertens Res. 2014;37(11):1021–7.

    Article  PubMed  Google Scholar 

  25. Wagner DR, Heyward VH. Measures of body composition in blacks and whites: a comparative review. Am J Clin Nutr. 2000;71(6):1392–402.

    Article  CAS  PubMed  Google Scholar 

  26. Echocardiographic Normal Ranges Meta-Analysis of the Left Heart Collaboration. Ethnic-specific normative reference values for echocardiographic LA and LV size, LV mass, and systolic function: the EchoNoRMAL study. JACC Cardiovasc Imaging. 2015;8(6):656–65.

    Article  Google Scholar 

  27. Robinson C, et al. Novel approach to the detection of left ventricular hypertrophy using body mass index-corrected electrocardiographic voltage criteria in a Group of African Ancestry. Clin Cardiol. 2016;39(9):524–30.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Woodiwiss and Norton. Thresholds for echocardiographic LVH in healthy, non-hypertensive, non-diabetic, non-obese Black Africans (personal Communication).

    Google Scholar 

  29. Nunez E, et al. Optimal threshold value for left ventricular hypertrophy in blacks: the atherosclerosis risk in communities study. Hypertension. 2005;45(1):58–63.

    Article  CAS  PubMed  Google Scholar 

  30. Lorber R, et al. Influence of systolic blood pressure and body mass index on left ventricular structure in healthy African-American and white young adults: the CARDIA study. J Am Coll Cardiol. 2003;41(6):955–60.

    Article  PubMed  Google Scholar 

  31. Gardin JM, et al. Relationship of cardiovascular risk factors to echocardiographic left ventricular mass in healthy young black and white adult men and women. The CARDIA study. Coronary artery risk development in young adults. Circulation. 1995;92(3):380–7.

    Article  CAS  PubMed  Google Scholar 

  32. Abdalla M, et al. Hypertension and alterations in left ventricular structure and geometry in African Americans: the Jackson Heart Study. J Am Soc Hypertens. 2016;10(7):550–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bello H, et al. Contributions of aortic pulse wave velocity and backward wave pressure to variations in left ventricular mass are independent of each other. J Am Soc Hypertens. 2017;11(5):265–274 e2.

    Article  PubMed  Google Scholar 

  34. Bacharova L, et al. Determinants of discrepancies in detection and comparison of the prognostic significance of left ventricular hypertrophy by electrocardiogram and cardiac magnetic resonance imaging. Am J Cardiol. 2015;115(4):515–22.

    Article  PubMed  Google Scholar 

  35. Crow RS, et al. Relation between electrocardiography and echocardiography for left ventricular mass in mild systemic hypertension (results from treatment of mild hypertension study). Am J Cardiol. 1995;75(17):1233–8.

    Article  CAS  PubMed  Google Scholar 

  36. Chapman JN, et al. Ethnic differences in the identification of left ventricular hypertrophy in the hypertensive patient. Am J Hypertens. 1999;12(5):437–42.

    Article  CAS  PubMed  Google Scholar 

  37. Lee DK, et al. Left ventricular hypertrophy in black and white hypertensives. Standard electrocardiographic criteria overestimate racial differences in prevalence. JAMA. 1992;267(24):3294–9.

    Article  CAS  PubMed  Google Scholar 

  38. Krovetz LJ. Racial differences of apparent electrocardiographic left ventricular hypertrophy. Am J Cardiol. 1994;74(4):418.

    Article  CAS  PubMed  Google Scholar 

  39. Walker AR, et al. Cardio-thoracic ratio in Negroes in Southern Africa. Postgrad Med J. 1972;48(564):584–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maunganidze F, et al. Obesity markedly attenuates the validity and performance of all electrocardiographic criteria for left ventricular hypertrophy detection in a group of black African ancestry. J Hypertens. 2013;31(2):377–83.

    Article  CAS  PubMed  Google Scholar 

  41. Jaggy C, et al. Performance of classic electrocardiographic criteria for left ventricular hypertrophy in an African population. Hypertension. 2000;36(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  42. Martin TC, Bhaskar YG, Umesh KV. Sensitivity and specificity of the electrocardiogram in predicting the presence of increased left ventricular mass index on the echocardiogram in Afro-Caribbean hypertensive patients. West Indian Med J. 2007;56(2):134–8.

    Article  CAS  PubMed  Google Scholar 

  43. Vanezis AP, Bhopal R. Validity of electrocardiographic classification of left ventricular hypertrophy across adult ethnic groups with echocardiography as a standard. J Electrocardiol. 2008;41(5):404–12.

    Article  PubMed  Google Scholar 

  44. Cuspidi C, et al. Left ventricular hypertrophy and cardiovascular risk stratification: impact and cost-effectiveness of echocardiography in recently diagnosed essential hypertensives. J Hypertens. 2006;24(8):1671–7.

    Article  CAS  PubMed  Google Scholar 

  45. Calderon A, et al. Detection of left ventricular hypertrophy by different electrocardiographic criteria in clinical practice. Findings from the Sara study. Clin Exp Hypertens. 2010;32(3):145–53.

    Article  PubMed  Google Scholar 

  46. Okin PM, et al. Combining ECG criteria for left ventricular hypertrophy improves risk prediction in patients with hypertension. J Am Heart Assoc. 2017;6(11):e007564.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jingi AM, et al. Determinants and improvement of electrocardiographic diagnosis of left ventricular hypertrophy in a black African population. PLoS One. 2014;9(5):e96783.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Maunganidze F, et al. Left ventricular hypertrophy detection from simple clinical measures combined with electrocardiographic criteria in a group of African ancestry. Clin Res Cardiol. 2014;103(11):921–9.

    Article  PubMed  Google Scholar 

  49. Odili AN, et al. Office and home blood pressures as determinants of electrocardiographic left ventricular hypertrophy among black Nigerians compared with white Flemish. Am J Hypertens. 2017;30(11):1083–92.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Arnett DK, et al. Black-white differences in electrocardiographic left ventricular mass and its association with blood pressure (the ARIC study). Atherosclerosis risk in communities. Am J Cardiol. 1994;74(3):247–52.

    Article  CAS  PubMed  Google Scholar 

  51. Peer N, et al. Determinants of target organ damage in black hypertensive patients attending primary health care services in Cape Town: the Hi-Hi study. Am J Hypertens. 2008;21(8):896–902.

    Article  PubMed  Google Scholar 

  52. Adeoye AM, et al. Exploring overlaps between the genomic and environmental determinants of LVH and stroke: a multicenter study in West Africa. Glob Heart. 2017;12(2):107–113 e5.

    Article  PubMed  Google Scholar 

  53. Chirinos JA, et al. Ethnic differences in arterial wave reflections and normative equations for augmentation index. Hypertension. 2011;57(6):1108–16.

    Article  CAS  PubMed  Google Scholar 

  54. de Simone G, et al. Relation of obesity and gender to left ventricular hypertrophy in normotensive and hypertensive adults. Hypertension. 1994;23(5):600–6.

    Article  PubMed  Google Scholar 

  55. Lauer MS, et al. The impact of obesity on left ventricular mass and geometry. The Framingham Heart Study. JAMA. 1991;266(2):231–6.

    Article  CAS  PubMed  Google Scholar 

  56. Norton GR, et al. The relationship between blood pressure and left ventricular mass index depends on an excess adiposity. J Hypertens. 2009;27(9):1873–83.

    Article  CAS  PubMed  Google Scholar 

  57. Woodiwiss AJ, et al. Obesity promotes left ventricular concentric rather than eccentric geometric remodeling and hypertrophy independent of blood pressure. Am J Hypertens. 2008;21(10):1144–51.

    Article  PubMed  Google Scholar 

  58. Haffner SM, et al. LDL size in African Americans, Hispanics, and non-Hispanic whites : the insulin resistance atherosclerosis study. Arterioscler Thromb Vasc Biol. 1999;19(9):2234–40.

    Article  CAS  PubMed  Google Scholar 

  59. Effoe VS, et al. Acculturation is associated with left ventricular mass in a multiethnic sample: the multi-ethnic study of atherosclerosis. BMC Cardiovasc Disord. 2015;15:161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Peterson VR, et al. Intrafamilial aggregation and heritability of left ventricular geometric remodeling is independent of cardiac mass in families of African ancestry. Am J Hypertens. 2015;28(5):657–63.

    Article  PubMed  Google Scholar 

  61. Niiranen TJ, et al. Familial clustering of hypertensive target organ damage in the community. In: J Hypertens, vol. 36; 2018. p. 1086.

    Google Scholar 

  62. Drazner MH, et al. Increased left ventricular mass is a risk factor for the development of a depressed left ventricular ejection fraction within five years: the Cardiovascular Health Study. J Am Coll Cardiol. 2004;43(12):2207–15.

    Article  PubMed  Google Scholar 

  63. Gottdiener JS, et al. Predictors of congestive heart failure in the elderly: the Cardiovascular Health Study. J Am Coll Cardiol. 2000;35(6):1628–37.

    Article  CAS  PubMed  Google Scholar 

  64. Wong ND, et al. Echocardiographic left ventricular systolic function and volumes in young adults: distribution and factors influencing variability. Am Heart J. 1995;129(3):571–7.

    Article  CAS  PubMed  Google Scholar 

  65. Devereux RB, et al. Left ventricular systolic dysfunction in a biracial sample of hypertensive adults: the Hypertension Genetic Epidemiology Network (HyperGEN) Study. Hypertension. 2001;38(3):417–23.

    Article  CAS  PubMed  Google Scholar 

  66. Thom T, et al. Heart disease and stroke statistics—2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2006;113(6):e85–151.

    PubMed  Google Scholar 

  67. Ni H. Prevalence of self-reported heart failure among US adults: results from the 1999 National Health Interview Survey. Am Heart J. 2003;146(1):121–8.

    Article  PubMed  Google Scholar 

  68. Bahrami H, et al. Differences in the incidence of congestive heart failure by ethnicity: the multi-ethnic study of atherosclerosis. Arch Intern Med. 2008;168(19):2138–45.

    Article  PubMed  PubMed Central  Google Scholar 

  69. He J, et al. Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Arch Intern Med. 2001;161(7):996–1002.

    Article  CAS  PubMed  Google Scholar 

  70. Yancy CW, et al. Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: a report from the acute decompensated heart failure National Registry (ADHERE) database. J Am Coll Cardiol. 2006;47(1):76–84.

    Article  PubMed  Google Scholar 

  71. Sharp A, et al. Ethnicity and left ventricular diastolic function in hypertension an ASCOT (Anglo-Scandinavian cardiac outcomes trial) substudy. J Am Coll Cardiol. 2008;52(12):1015–21.

    Article  PubMed  Google Scholar 

  72. Libhaber CD, et al. Differential relationships of systolic and diastolic blood pressure with components of left ventricular diastolic dysfunction. J Hypertens. 2014;32(4):912–20.

    Article  CAS  PubMed  Google Scholar 

  73. Millen AM, et al. Relative impact of blood pressure as compared to an excess adiposity on left ventricular diastolic dysfunction in a community sample with a high prevalence of obesity. J Hypertens. 2014;32(12):2457–64. discussion 2464.

    Article  CAS  PubMed  Google Scholar 

  74. Peterson V, et al. Insulin resistance-associated decreases in left ventricular diastolic function are strongly modified by the extent of concentric remodeling in a community sample. Int J Cardiol. 2016;220:349–55.

    Article  PubMed  Google Scholar 

  75. Sliwa K, Stewart S. Heart failure in the developing world. In: Michael Felker G, Mann D, editors. Heart failure: a companion to Braunwald’s heart disease; 2016. p. 410–9.

    Google Scholar 

  76. Faller H, et al. Impact of depression on quality of life assessment in heart failure. Int J Cardiol. 2010;142(2):133–7.

    Article  PubMed  Google Scholar 

  77. Fagnani F, et al. Management, cost and mortality of a cohort of patients with advanced heart failure (the EPICAL study). Therapie. 2001;56(1):5–10.

    CAS  PubMed  Google Scholar 

  78. Thomas S, Rich MW. Epidemiology, pathophysiology, and prognosis of heart failure in the elderly. Heart Fail Clin. 2007;3(4):381–7.

    Article  PubMed  Google Scholar 

  79. Aronow WS. Epidemiology, pathophysiology, prognosis, and treatment of systolic and diastolic heart failure. Cardiol Rev. 2006;14(3):108–24.

    Article  PubMed  Google Scholar 

  80. Damasceno A, et al. The causes, treatment, and outcome of acute heart failure in 1006 Africans from 9 countries. Arch Intern Med. 2012;172(18):1386–94.

    Article  CAS  PubMed  Google Scholar 

  81. Sliwa K. Is all heart failure the same around the globe? Eur Heart J. 2013;34(40):3091–2.

    Article  PubMed  CAS  Google Scholar 

  82. Adams KF Jr, et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2005;149(2):209–16.

    Article  PubMed  Google Scholar 

  83. Nieminen MS, et al. EuroHeart Failure Survey II (EHFS II): a survey on hospitalized acute heart failure patients: description of population. Eur Heart J. 2006;27(22):2725–36.

    Article  PubMed  Google Scholar 

  84. Mayosi BM. Contemporary trends in the epidemiology and management of cardiomyopathy and pericarditis in sub-Saharan Africa. Heart. 2007;93(10):1176–83.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Stewart S, et al. Predominance of heart failure in the Heart of Soweto Study cohort: emerging challenges for urban African communities. Circulation. 2008;118(23):2360–7.

    Article  PubMed  Google Scholar 

  86. Ojji D, et al. A predominance of hypertensive heart failure in the Abuja Heart Study cohort of urban Nigerians: a prospective clinical registry of 1515 de novo cases. Eur J Heart Fail. 2013;15(8):835–42.

    Article  PubMed  Google Scholar 

  87. Sliwa K, et al. Spectrum of heart disease and risk factors in a black urban population in South Africa (the Heart of Soweto Study): a cohort study. Lancet. 2008;371(9616):915–22.

    Article  PubMed  Google Scholar 

  88. Stewart S, et al. Standing at the crossroads between new and historically prevalent heart disease: effects of migration and socio-economic factors in the Heart of Soweto cohort study. Eur Heart J. 2011;32(4):492–9.

    Article  PubMed  Google Scholar 

  89. Ogah OS, et al. Contemporary profile of acute heart failure in southern Nigeria: data from the Abeokuta Heart Failure Clinical Registry. JACC Heart Fail. 2014;2(3):250–9.

    Article  PubMed  Google Scholar 

  90. Isezuo AS, ABO O, Gaye A, Corrah T, Araoye MA. One year survival among sub-Saharan Africans with hypertensive heart failure. Cardiologie Tropicale. 2000;26(103):57–60.

    Google Scholar 

  91. Rotimi O, Ajayi AA, Odesanmi WO. Sudden unexpected death from cardiac causes in Nigerians: a review of 50 autopsied cases. Int J Cardiol. 1998;63(2):111–5.

    Article  CAS  PubMed  Google Scholar 

  92. Bloomfield GS, et al. Heart failure in sub-Saharan Africa. Curr Cardiol Rev. 2013;9(2):157–73.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Frohlich ED. State of the art lecture. Risk mechanisms in hypertensive heart disease. Hypertension. 1999;34(4 Pt 2):782–9.

    Article  CAS  PubMed  Google Scholar 

  94. Fuchs FD. Why do black Americans have higher prevalence of hypertension?: an enigma still unsolved. Hypertension. 2011;57(3):379–80.

    Article  CAS  PubMed  Google Scholar 

  95. Gluba A, et al. An update on biomarkers of heart failure in hypertensive patients. J Hypertens. 2012;30(9):1681–9.

    Article  CAS  PubMed  Google Scholar 

  96. Ojji DB, et al. Relationship between left ventricular geometry and soluble ST2 in a cohort of hypertensive patients. J Clin Hypertens (Greenwich). 2013;15(12):899–904.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Damasceno, A., Woodiwiss, A., Sani, M. (2018). Hypertension and the Heart in Africa. In: Modesti, P., Cappuccio, F., Parati, G. (eds) Ethnic Diversities, Hypertension and Global Cardiovascular Risk. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-93148-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93148-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93147-0

  • Online ISBN: 978-3-319-93148-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics