Skip to main content

Lab-on-Chip Silicon Photonic Sensor

  • Chapter
  • First Online:
The IoT Physical Layer

Abstract

We propose a design of a compact photonic sensor based on two cascaded rings in a Vernier configuration integrated with a low-resolution flat-top planar echelle grating (PEG) de-multiplexer. The Vernier rings are composed of a filter and sensor rings. The sensor maps discrete changes in the index contrast, due to the presence of a target analyte, to a set of de-multiplexer channels. The channel number with highest transmittance is directly proportional to the incremental change of the effective index. Optical characteristics at different free spectral ranges (FSRs) , ranging from 1 nm to 10 nm, have been studied. For example, if a filter ring FSR of 5 nm is selected, the corresponding sensor ring and de-multiplexer FSR are 4.7 and 5 nm, respectively, whereas the limit of detection (LOD) is \(620\times 10^{-6}\) RIU and \(1500\times 10^{-6}\) RIU for a ring round-trip loss of 0.1 and 0.72 dB, respectively. Meanwhile, higher sensitivity can be achieved for 1 nm FSR, where the corresponding LODs are \(160\times 10^{-6}\) RIU and \(300\times 10^{-6}\) RIU, respectively. Furthermore, by using a thermo-optic phase shift tuner, an ultra-low LOD down to \(80\times 10^{-6}\) RIU can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.M. Passaro, M. La Notte, B. Troia, L. Passaquindici, F. De Leonardis, G. Giannoccaro, Photonic structures based on slot waveguides for nanosensors: state of the art and future developments. J. Res. Rev. Appl. Sci 11, 402–418 (2012)

    MathSciNet  Google Scholar 

  2. N.-A. Yebo, S.-P. Sree, E. Levrau, C. Detavernier, Z. Hens, J.-A. Martens et al., Selective and reversible ammonia gas detection with nanoporous film functionalized silicon photonic micro-ring resonator. Opt. Express 20, 11855–11862 (2012)

    Article  Google Scholar 

  3. K. Misiakos, A. Botsialas, I. Raptis, E. Makarona, G. Jobst, P. Petrou et al., Monolithically integrated frequency-resolved mach-zehnder interferometers for highly-sensitive multiplexed label-free bio/chemical sensing, in Sensors, 2011 IEEE (2011), pp. 1317–1320

    Google Scholar 

  4. Y. Liu, H. Salemink, Photonic crystal-based all-optical on-chip sensor, in IEEE Sensors 2011, vol. 20 (2012), pp. 19912–19920

    Google Scholar 

  5. G. Nemova, R. Kashyap, Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation. Opt. Commun. 275, 76–82 (2007)

    Article  Google Scholar 

  6. S.-Y. Cho, N.M. Jokerst, A polymer microdisk photonic sensor integrated onto silicon, Photonics Technology Letters. IEEE Photonics Technol. Lett. IEEE 18, 2096–2098 (2006)

    Article  Google Scholar 

  7. C.-Y. Chao, L.J. Guo, Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl. Phys. Lett. 83, 1527–1529 (2003)

    Article  Google Scholar 

  8. Q. Xu, V.R. Almeida, R.R. Panepucci, M. Lipson, Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt. Lett. 29, 1626–1628 (2004)

    Article  Google Scholar 

  9. D. Xu, A. Densmore, A. Delacge, P. Waldron, R. McKinnon, S. Janz et al., Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding. Opt. Express 16, 15137–15148 (2008)

    Article  Google Scholar 

  10. A.M. Armani, R.P. Kulkarni, S.E. Fraser, R.C. Flagan, K.J. Vahala, Label-free, single-molecule detection with optical microcavities. Science 317, 783–787 (2007)

    Article  Google Scholar 

  11. I.M. White, X. Fan, On the performance quantification of resonant refractive index sensors. Opt. Express 16, 1020–1028 (2008)

    Article  Google Scholar 

  12. J. Liu, X. Zhou, Z. Qiao, J. Zhang, C. Zhang, T. Xiang et al., Integrated optical chemical sensor based on an SOI ring resonator using phase-interrogation. IEEE Photonics J. 6, 1–7 (2014)

    Google Scholar 

  13. L. Jin, M. Li, J.-J. He, Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect. Opt. Commun. 284, 156–159 (2011)

    Article  Google Scholar 

  14. D. Dai, Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators. Opt. Express 17, 23817–23822 (2009)

    Article  Google Scholar 

  15. J. Hu, D. Dai, Cascaded-ring optical sensor with enhanced sensitivity by using suspended Si-nanowires. IEEE Photonics Technol. Lett. 23, 842–844 (2011)

    Article  Google Scholar 

  16. T. Claes, W. Bogaerts, P. Bienstman, Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit. Opt. Express 18, 22747–22761 (2010)

    Article  Google Scholar 

  17. O. Al Mrayat, M. Rasras, A digital-like on-chip photonics sensor, in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper JW2A.78

    Google Scholar 

  18. L. Chen, C.R. Doerr, P. Dong, Y.-K. Chen, Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing. Opt. Expres 19, B946–B951 (2011)

    Article  Google Scholar 

  19. M.S. Rasras, D.M. Gill, M.P. Earnshaw, C.R. Doerr, J.S. Weiner, C. Bolle et al., CMOS silicon receiver integrated with Ge detector and reconfigurable optical filter. IEEE Photonics Technol. Lett. 22, 112–114 (2010)

    Article  Google Scholar 

  20. M.S. Rasras, D.M. Gill, S.S. Patel, K.-Y. Tu, Y.-K. Chen, A.E. White et al., Demonstration of a fourth-order pole-zero optical filter integrated using CMOS processes. IEEE J. Lightwave Technol. 25, 87–92 (2007)

    Article  Google Scholar 

  21. J.B.D. Soole, A. Scherer, H.P. LeBlanc, N.C. Andreadakis, R. Bhat, M.A. Koza, Monolithic InP/InGaAsP/InP grating spectrometer for the 1.48–1.56 $\upmu $m wavelength range. Appl. Phys. Lett. 58(18), 1949–1951 (1991)

    Article  Google Scholar 

  22. S.H. Kong, D.D.L. Wijngaards, R.F. Wolffenbuttel, Infrared micro-spectrometer based on a diffraction grating. Sens. Actuators, A 92(1), 88–95 (2001)

    Article  Google Scholar 

  23. K.C. Harvey, C.J. Myatt, External-cavity diode laser using a grazing-incidence diffraction grating. Opt. Lett. 16(12), 910–912 (1991)

    Article  Google Scholar 

  24. I.P. Kaminow, H.P. Weber, E.A. Chandross, Poly (Methyl Methacrylate) dye laser with internal diffraction grating resonator. Appl. Phys. Lett. 18(11), 497–499 (1971)

    Article  Google Scholar 

  25. I. Shoshan, U.P. Oppenheim, The use of a diffraction grating as a beam expander in a dye laser cavity. Opt. Commun. 25(3), 375–378 (1978)

    Article  Google Scholar 

  26. H. Fathallah, L.A. Rusch, S. LaRochelle, Passive optical fast frequency-hop CDMA communications system. IEEE J. Lightwave Technol. 17(3), 397–405 (1999)

    Article  Google Scholar 

  27. S. Pathak, P. Dumon, D. Thourhout, W. Bogaerts, Comparison of AWGs and Echelle gratings for wavelength division multiplexing on silicon-on-insulator. IEEE Photonics J. 6(5) (2014)

    Google Scholar 

  28. K.A. McGreer, Theory of concave gratings based on a recursive definition of facet positions. Appl. Optics. 35(30) (1996)

    Google Scholar 

  29. R. Marz, C. Cremer, On the theory of planar spectrographs. IEEE J. Lightwave Technol. 10(12), 2017–2022 (1992)

    Article  Google Scholar 

  30. H.A. Rowland et al., Preliminary notice of the results accomplished in the manufacture and theory of gratings for optical purpose. Philos. Mag. 13, 469–474 (1882)

    Article  Google Scholar 

  31. M. Born, E. Wolf, Principles of Optic (Pergamon, New York, 1980)

    Google Scholar 

  32. D. Chowdhury, Design of low-loss and polarization-insensitive reflection grating-based planar demultiplexers. IEEE J. Sel. Top. Q. Electron 6(2), 233–239 (2000)

    Article  Google Scholar 

  33. J. Brouckaert, W. Bogaerts, P. Dumon, D. Van Thourhout, R. Baets, Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform. IEEE J. Lightwave Technol. 25, 5 (2007)

    Google Scholar 

  34. E. Gini, W. Hunziker, H. Melchior, Polarization independent InP WDM multiplexer/demultiplexer module. IEEE J. Lightwave Technol. 16(4), 625–630 (1998)

    Article  Google Scholar 

  35. W.H. Wang, Y.Z. Tang, Y.X. Wang, H.C. Qu, Y.M. Wu, T. Li, J.Y. Yang, Y.L. Wang, M. Liu, Etched-diffraction-grating-based planar waveguide demultiplexer on silicon-on-insulator. Opt. Quant. Electron. 36, 559–566 (2004)

    Article  Google Scholar 

  36. Z.J. Sun, K.A. McGreer, J.N. Broughton, Demultiplexer with 120 channels and 0.29-nm channel spacing. IEEE Photonics Technol. Lett. 10(1), 90–92 (1998)

    Article  Google Scholar 

  37. J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, D. Van Thourhout, Planar concave grating demultiplexer with high reflective Bragg reflector facets. IEEE Photonics Technol. Lett. 20, 309–311 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Semiconductor Research Corporation (SRC) under the Abu Dhabi SRC Center of Excellence on Energy-Efficient Electronic Systems (\(ACE^{4}S\)), Contract 2013-HJ2440, with funding from the Mubadala Development Company, Abu Dhabi, UAE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud S. Rasras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rasras, M.S., Al Mrayat, O. (2019). Lab-on-Chip Silicon Photonic Sensor. In: Elfadel, I., Ismail, M. (eds) The IoT Physical Layer. Springer, Cham. https://doi.org/10.1007/978-3-319-93100-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93100-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93099-2

  • Online ISBN: 978-3-319-93100-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics