Skip to main content

ALD Al-doped ZnO Thin Film as Semiconductor and Piezoelectric Material: Characterization

  • Chapter
  • First Online:
The IoT Physical Layer

Abstract

This chapter covers the physical characterization of various aluminum-doped ZnO films that were synthesized. At high level, it includes electrical characterization followed by mechanical characterization. The electrical characterization includes Hall measurements to assess the mobility of the films, resistance measurements using special microfabricated patterned structures and carrier concentration measurements. The impact of Al doping on the ZnO thin films shows a very strong electrical signal, which manifested itself in the measured values of these parameters that are mentioned above. The results indicate the ability to tune various electrical parameters of the ZnO films through Al doping and growth temperature. Through response surface modeling, a sweet spot is identified where resistivity, mobility, and carrier concentration can be optimized to target values. While the mechanical characterization includes the piezoeffect characterization along with stress and strain analysis. This includes the comparison of different dielectrics films vis–vis ZnO films, followed by an assessment of 1D versus 2D piezoelectric structures including the wurtzite ZnO thin film. This includes the explanation of why these films have the highest piezoelectric coefficient in their class of materials and the role played by c-axis alignment in interpreting these observations. This establishes the criticality of assessing these quantities to come up with the right understanding and explanation for any observations seen in new class of thin films where the method of synthesis or doping is changed. Finally, the assessment of stress and strain in these film systems is presented with the role played by the substrate and the direction of the bending of the thin film. The experimental results include the design and fabrication of a “curved” stage that is used to induce the strains, and compute the associated stress generated, in quantifiable fashion to model the thin-film behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.S. Na, G. Scarel, G.N. Parsons, In situ analysis of dopant incorporation, activation, and film growth during thin film ZnO ZnO: Al Atomic layer deposition. J. Phys. Chem. C 114(1), 383–388 (2010)

    Google Scholar 

  2. Renier klenk, Martina Ch Lux-Steiner, Chalcopyrite based solar cells, in Thin Film Solar Cells Fabrication, Characterization and Applications (Wiley, UK, 2006), pp. 237–275

    Google Scholar 

  3. Su Cheol Gong, Ji Geun Jang, Ho Jung Chang, Jin-Seong Park, The characteristics of organic light emitting diodes with Al doped zinc oxide grown by atomic layer deposition as a transparent conductive anode. Synthetic Metals 161(9–10), 823–827 (2011)

    Google Scholar 

  4. A.K. Pradhan, R.M. Mundle, K. Santiago, J.R. Skuza, B. Xiao, K.D. Song, M. Bahoura, R. Cheaito, P.E. Hopkins, Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications. Sci. Rep. 4(1), 6415 (2014)

    Google Scholar 

  5. T. Minami, H. Nanto, S. Takata, Optical properties of aluminum doped zinc oxide thin films prepared by rf magnetron sputtering. Jpn. J. Appl. Phys. 24(8), L605–L607 (1985)

    Google Scholar 

  6. S.D. Kirby, R.B. van Dover, Improved conductivity of ZnO through codoping with In and Al. Thin Solid Films 517(6), 1958–1960 (2009)

    Google Scholar 

  7. C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, B. Rech, M. Wuttig, Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films. J. Appl. Phys. 95(4), 1911–1917 (2004)

    Google Scholar 

  8. Kun Ho Kim, Ki Cheol Park, Dae Young Ma, Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering. J. Appl. Phys. 81(12), 7764 (1997)

    Google Scholar 

  9. G. Luka, P. Stakhira, V. Cherpak, D. Volynyuk, Z. Hotra, M. Godlewski, E. Guziewicz, B. Witkowski, W. Paszkowicz, A. Kostruba, The properties of tris (8-hydroxyquinoline) aluminum organic light emitting diode with undoped zinc oxide anode layer. J. Appl. Phys. 108(6), 064518 (2010)

    Google Scholar 

  10. Z.C. Jin, I. Hamberg, C.G. Granqvist, Optical properties of sputter-deposited ZnO: Al thin films. J. Appl. Phys. 64(10), 5117–5131 (1988)

    Article  Google Scholar 

  11. Sang-Hee Ko Park, Jeong-Ik Lee, Chi-Sun Hwang, Hye Yong Chu, Characteristics of organic light emitting diodes with Al-doped ZnO anode deposited by atomic layer deposition. Jpn. J. Appl. Phys. 44(7), L242–L245 (2005)

    Google Scholar 

  12. H. Agura, A. Suzuki, T. Matsushita, T. Aoki, M. Okuda, Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition. Thin Solid Films 445(2), 263–267 (2003)

    Google Scholar 

  13. H. Tanaka, K. Ihara, T. Miyata, H. Sato, T. Minami, Low resistivity polycrystalline ZnO : Al thin films prepared by pulsed laser deposition. J. Vac. Sci. Technol. A 22(4), 1757–1762 (2004)

    Google Scholar 

  14. J.W. Elam, Z.A. Sechrist, S.M. George, ZnO/Al2\(_{\text{O}3}\) nanolaminates fabricated by atomic layer deposition: Growth and surface roughness measurements. Thin Solid Films 414(1), 43–55 (2002)

    Google Scholar 

  15. Horacio D Espinosa, Rodrigo A Bernal, Majid Minary-Jolandan, A review of mechanical and electromechanical properties of piezoelectric nanowires. Adv. Mater. 24(34), 4656–4675 (2012)

    Google Scholar 

  16. Z.L. Wang, X.Y. Kong, Y. Ding, P. Gao, W.L. Hughes, R. Yang, Y. Zhang, Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv. Funct. Mater. 14(10), 943–956 (2004)

    Google Scholar 

  17. Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)

    Google Scholar 

  18. Q. Yang, W. Wang, S. Xu, Z.L. Wang, Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect. Nano Lett. 11(9), 4012–4017 (2011)

    Google Scholar 

  19. H. Youfan, Y. Zhang, L. Lin, Y. Ding, G. Zhu, Z.L. Wang, Piezo-phototronic effect on electroluminescence properties of p-type GaN thin films. Nano Lett. 12(7), 3851–3856 (2012)

    Google Scholar 

  20. Z.L. Wang, W. Wu, Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angewandte Chemie - Int. Edition 51(47), 11700–11721 (2012)

    Google Scholar 

  21. N. Izyumskaya, Y.-I. Alivov, S.-J. Cho, H. Morkoc, H. Lee, Y.-S. Kang, Processing, structure, properties, and applications of PZT thin films. Critical Rev. Solid State Mater. Sci. 32(September), 111–202 (2007)

    Google Scholar 

  22. Hong Chen, Chen Jia, Wenhan Hao, Chun Zhang, Zhihua Wang, Chunsheng Liu, Power harvesting with PZT ceramics and circuits design. Analog Integr. Circuits Signal Process. 62(2), 263–268 (2010)

    Google Scholar 

  23. Kiyotaka Wasa, Isaku Kanno, Hidetoshi Kotera, Fundamentals of thin film piezoelectric materials and processing design for a better energy harvesting MEMS. Power MEMS 61, 61–66 (2009)

    Google Scholar 

  24. C.T. Pan, Z.H. Liu, Y.C. Chen, C.F. Liu, Design and fabrication of flexible piezo-microgenerator by depositing ZnO thin films on PET substrates. Sens. Actuators, A: Phys. 159(1), 96–104 (2010)

    Google Scholar 

  25. A. Kuoni, R.L. Holzherr, M. Boillat, N.F. De Rooij, Polyimide membrane with ZnO piezoelectric thin film pressure transducers as a differential pressure liquid flow sensor. J. Micromech. Microeng. 13(4), S103–S107 (2003)

    Google Scholar 

  26. J. Molarius, J. Kaitila, T. Pensala, M. Ylilammi, Piezoelectric ZnO films by r.f. sputtering. J. Mater. Sci. Mater. Electron. 14(5–7), 431–435 (2003)

    Google Scholar 

  27. Takayuki Shibata, Kazuya Unno, Eiji Makino, Yoshiho Ito, Shiro Shimada, Characterization of sputtered ZnO thin film as sensor and actuator for diamond AFM probe. Sens. Actuators, A: Phys. 102(1–2), 106–113 (2002)

    Article  Google Scholar 

  28. H.I. Kuo, J. Guo, W.H. Ko, High performance piezoresistive micro strain sensors, in Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE NEMS, 2007), pp. 1052–1055

    Google Scholar 

  29. H. Gullapalli, V.S.M. Vemuru, Ashavani Kumar, A. Botello-Mendez, R. Vajtai, M. Terrones, S. Nagarajaiah, P.M. Ajayan, Flexible piezoelectric zno-paper nanocomposite strain sensor. Small 6(15), 1641–1646 (2010)

    Google Scholar 

  30. D. Choi, K.Y. Lee, K.H. Lee, Eok Su Kim, T. Sang Kim, S.Y. Lee, S.-W. Kim, J.-Y. Choi, J.M. Kim, Piezoelectric touch-sensitive flexible hybrid energy harvesting nanoarchitectures. Nanotechnology 21(40), 405503 (2010)

    Google Scholar 

  31. Eun Sok Kim, R.S. Muller, IC-processed piezoelectric microphone. IEEE Electron Device Lett. 8(10), 467–468 (1987)

    Google Scholar 

  32. C.J. Van Mullem, F.R. Blom, J.H.J. Fluitman, M. Elwenspoek, Piezoelectrically driven silicon beam force sensor. Sens. Actuators: A. Phys. 26(1–3), 379–383 (1991)

    Google Scholar 

  33. V.F. Rivera, F. Auras, P. Motto, S. Stassi, G. Canavese, E. Celasco, T. Bein, B. Onida, V. Cauda, Length-dependent charge generation from vertical arrays of high-aspect-ratio ZnO nanowires. Chem. - A Eur. J. 19(43), 14665–14674 (2013)

    Google Scholar 

  34. W. Zhang, Ren Zhu, Vu Nguyen, R. Yang, Highly sensitive and flexible strain sensors based on vertical zinc oxide nanowire arrays. Sens. Actuators, A: Phys. 205, 164–169 (2014)

    Google Scholar 

  35. J.M. Wu, C.Y. Chen, Y. Zhang, K.H. Chen, Y. Yang, Y. Hu, H. He, Z.L. Wang, Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO 3 nanowire/microwire. ACS Nano 6(5), 4369–4374 (2012)

    Google Scholar 

  36. Jae Min Kim, Taewook Nam, S.J. Lim, Y.G. Seol, N.E. Lee, Doyoung Kim, Hyungjun Kim, Atomic layer deposition ZnO: N flexible thin film transistors and the effects of bending on device properties. Appl. Phys. Lett. 98(14), 142113 (2011)

    Google Scholar 

  37. Niko Munzenrieder, Kunigunde H. Cherenack, Gerhard Troster, The effects of mechanical bending and illumination on the performance of flexible IGZO TFTs. IEEE Trans. Electron Devices 58(7), 2041–2048 (2011)

    Google Scholar 

  38. Yugang Sun, John A. Rogers, Inorganic semiconductors for flexible electronics. Adv. Mater. 19(15), 1897–1916 (2007)

    Google Scholar 

  39. Claus F Klingshirn, Andreas Waag, Alex Hoffmann, Jean Geurts, Zinc Oxide: From Fundamental Properties Towards Novel Applications (Springer, Berlin, 2010)

    Google Scholar 

  40. R.W. Soutas-Little, Elasticity (Dover Publications, 1999)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Semiconductor Research Corporation (SRC) under the Abu Dhabi SRC Center of Excellence on Energy-Efficient Electronic Systems (\(ACE^{4}S\)), Contract 2013 HJ2440, with funding from the Mubadala Development Company, Abu Dhabi, UAE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Saadat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rezk, A., Saadat, I. (2019). ALD Al-doped ZnO Thin Film as Semiconductor and Piezoelectric Material: Characterization. In: Elfadel, I., Ismail, M. (eds) The IoT Physical Layer. Springer, Cham. https://doi.org/10.1007/978-3-319-93100-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93100-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93099-2

  • Online ISBN: 978-3-319-93100-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics