Skip to main content

Self-Powered SoC Platform for Wearable Health Care

  • Chapter
  • First Online:
  • 1554 Accesses

Abstract

This chapter presents a top-level design of the first self-powered SoC platform that can predict, with high accuracy, ventricular arrhythmia before it occurs. The system provides a very high level of integration in a single chip of mainstream modules that are typically needed to build biomedical devices. Hence, the platform could help in reducing the cost in designing not only for ECG monitoring systems, but for generic low-power health care devices. The platform consists of a graphene-based sensors to acquire ECG signals, an analog front-end to amplify and digitize the ECG, a custom processor to perform feature extraction and classification, a wireless transmitter to send the data to a point of care, and an energy harvesting unit to power the whole system. The platform consumes very low power that can be completely powered by the thermal energy generated from the human body. The system is imagined to be integrated within a necklace which can be worn by a patient comfortably. Hence, it can provide a continuous monitoring of the patient’s condition and connect him directly to his doctor for immediate attention if necessary.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Nemati, M.J. Deen, T. Mondal, A wireless wearable ECG sensor for long-term applications. IEEE Commun. Mag. 50(1), 36–43 (2012)

    Article  Google Scholar 

  2. Y.M. Chi, T.-P. Jung, G. Cauwenberghs, Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev. Biomed. Eng. 3, 106–119 (2010)

    Article  Google Scholar 

  3. J.-Y. Baek, J.-H. An, J.-M. Choi, K.-S. Park, S.-H. Lee, Flexible polymeric dry electrodes for the long-term monitoring of ecg. Sens. Actuators A: Phys. 143(2), 423–429 (2008)

    Article  Google Scholar 

  4. Y.A. Samad, Y. Li, S.M. Alhassan, K. Liao, Non-destroyable graphene cladding on a range of textile and other fibers and fiber mats. RSC Adv. 4(33), 16935–16938 (2014)

    Article  Google Scholar 

  5. M.K. Yapici, T. Alkhidir, Y.A. Samad, K. Liao, Graphene-clad textile electrodes for electrocardiogram monitoring. Sens. Actuators B: Chem. 221, 1469–1474 (2015)

    Article  Google Scholar 

  6. C. Lu, V. Raghunathan, K. Roy, Efficient design of micro-scale energy harvesting systems. IEEE J. Emerg. Sel. Top. Circuits Syst. 1, 254–266 (2011)

    Article  Google Scholar 

  7. P.-S. Weng, H.-Y. Tang, P.-C. Ku, L.-H. Lu, 50 mv-input batteryless boost converter for thermal energy harvesting. IEEE J. Solid-State Circuits 48(4), 1031–1041 (2013)

    Article  Google Scholar 

  8. Y. Ramadass, A. Chandrakasan, A battery-less thermoelectric energy harvesting interface circuit with 35 mv startup voltage. IEEE J. Solid-State Circuits 46(1), 333–341 (2011)

    Article  Google Scholar 

  9. P. Luo, S. Zhen, J. Wang, K. Yang, P. Liao, X. Zhu, Digital assistant power integrated technologies for pmu in scaling cmos process. IEEE Trans. Power Electron. 29(7), 3798–3807 (2014)

    Article  Google Scholar 

  10. L.G. Salem, P.P. Mercier, An 85%-efficiency fully integrated 15-ratio recursive switched-capacitor dc-dc converter with 0.1-to-2.2 v output voltage range, in ISSCC (IEEE, 2014), pp. 88–89

    Google Scholar 

  11. J. Pyo, Y. Shin et al., 20nm high-k metal-gate heterogeneous 64b quad-core cpus and hexa-core gpu for high-performance and energy-efficient mobile application processor, in ISSCC (IEEE, 2015), pp. 1–3

    Google Scholar 

  12. H. Singh, K. Agarwal, D. Sylvester, K.J. Nowka, Enhanced leakage reduction techniques using intermediate strength power gating. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 15(11), 1215–1224 (2007)

    Article  Google Scholar 

  13. M. Alioto, Ultra-low power VLSI circuit design demystified and explained. Trans. Circuits Syst. I 59(1), 3–29 (2012)

    Article  MathSciNet  Google Scholar 

  14. N. Bayasi, T. Tekeste, H. Saleh, B. Mohammad, A. Khandoker, M. Ismail, Low-power ecg-based processor for predicting ventricular arrhythmia. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 99, 1–13 (2015)

    Google Scholar 

  15. E. Carlson, K. Strunz, B. Otis, A 20 mv input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE J. Solid-State Circuits 45(4), 741–750 (2010)

    Article  Google Scholar 

  16. Q. Fan, F. Sebastianen, H. Huijsing, K. Makinwa, A 2.1 \(\mu \)w area-efficient capacitively-coupled chopper instrumentation amplifier for ecg applications in 65 nm cmos, in 2010 IEEE Asian Solid State Circuits Conference (A-SSCC) (IEEE, 2010), pp. 1–4

    Google Scholar 

  17. Y.-P. Chen, D. Jeon, Y. Lee, Y. Kim, Z. Foo, I. Lee, N.B. Langhals, G. Kruger, H. Oral, O. Berenfeld et al., An injectable 64 nw ecg mixed-signal soc in 65 nm for arrhythmia monitoring. IEEE J. Solid-State Circuits 50(1), 375–390 (2015)

    Article  Google Scholar 

  18. X. Zou, X. Xu, J. Tan, L. Yao, Y. Lian, A 1-v 1.1-\(\mu \)w sensor interface ic for wearable biomedical devices, in 2008 IEEE International Symposium on Circuits and Systems (IEEE, 2008), pp. 2725–2728

    Google Scholar 

  19. X. Zou, X. Xu, L. Yao, Y. Lian, A 1-v 450-nw fully integrated programmable biomedical sensor interface chip. IEEE J. Solid-State Circuits 44(4), 1067–1077 (2009)

    Article  Google Scholar 

  20. X. Pu, L. Wan, Y. Sheng, P. Chiang, Y. Qin, Z. Hong, A wireless 8-channel ecg biopotential acquisition system for dry electrodes, in 2012 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT) (IEEE, 2012), pp. 140–142

    Google Scholar 

  21. C.-Y. Chiang, H.-H. Chen, T.-C. Chen, C.-S. Liu, Y.-J. Huang, S.-S. Lu, C.-W. Lin, L.-G. Chen, Analysis and design of on-sensor ecg processors for realtime detection of vf, vt, and pvc, in 2010 IEEE Workshop on Signal Processing Systems (SIPS) (2010), pp. 42–45

    Google Scholar 

  22. Q. Li, C. Rajagopalan, G. Clifford, Ventricular fibrillation and tachycardia classification using a machine learning approach. IEEE Trans. Biomed. Eng. 61, 1607–1613 (2014). June

    Article  Google Scholar 

  23. J. Martinez, R. Almeida et al., A wavelet-based ecg delineator: evaluation on standard database. IEEE Trans. Biomed. Eng. 51(4), 570–581 (2004)

    Google Scholar 

  24. N. Bayasi, T. Tekeste, H. Saleh, A. Khandoker, B. Mohammad, M. Ismail, Adaptive technique for p and t wave delineation in electrocardiogram signals, in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2014), pp. 90–93

    Google Scholar 

  25. T. Tekeste, N. Bayasi, H. Saleh, A. Khandoker, B. Mohammad, M. Al-Qutayri, M. Ismail, Adaptive ecg interval extraction, in 2015 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2015), pp. 998–1001

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Semiconductor Research Corporation (SRC) under the Abu Dhabi SRC Center of Excellence on Energy-Efficient Electronic Systems (\(ACE^{4}S\)), Contract 2013 HJ2440, with funding from the Mubadala Development Company, Abu Dhabi, UAE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani Saleh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alhawari, M. et al. (2019). Self-Powered SoC Platform for Wearable Health Care. In: Elfadel, I., Ismail, M. (eds) The IoT Physical Layer. Springer, Cham. https://doi.org/10.1007/978-3-319-93100-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93100-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93099-2

  • Online ISBN: 978-3-319-93100-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics