Skip to main content

Nature-Inspired? Optimization in the Era of IoT: Particle Swarm Optimization (PSO) Applied to Indoor-Distributed Antenna Systems (I-DAS)

  • Chapter
  • First Online:
The IoT Physical Layer

Abstract

The Internet of Things (IoT) refers to a network type structure (like the Internet) that connects (unique) objects and things. Sensors and devices, integrated into all types of objects, are increasingly connected through wireless networks and, ultimately, the Internet. Already the existing ICT infrastructure accounts for roughly 10% of the global power consumption. By the year 2020, this network will contain 50 billion connected devices and the global IoT/machine-to-machine (M2M) communication market will have a volume of $ 0.5 trillion. Pervasive indoor wireless access has almost become a standard in the first world, but ensuring a thorough and economically sound wireless signal coverage throughout buildings is not a trivial problem. In-building Distributed Antenna Systems (I-DAS) extend wireless access from the base station to distributed antennas through a complex network of coaxial cables and power splitters. For high rise buildings and other multi-unit complexes, the initial cost of I-DAS (cabling and splitters) and the running costs of powering the network are quite significant, motivating the need to optimize the design of I-DAS networks. We propose to utilize Particle Swarm Optimization (PSO) to provide near-optimal network topology. Our PSO model uses Prüfer code representation to efficiently traverse through different spanning tree solutions. Our approach is scalable and robust, capable of producing I-DAS design advice for buildings beyond one hundred floors. We demonstrate that our model is capable of obtaining optimal solutions for small buildings and near-optimal solutions for tall buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.world-nuclear.org/info/inf16.html.

References

  1. M. Naphade, G. Banavar, C. Harrison, J. Paraszczak, R. Morris, Smarter cities and their innovation challenges. Computer 44(6), 32–39 (2011)

    Google Scholar 

  2. C. Woodside, It isn’t easy being green. Nature Clim. Change 1(1), 13–15 (2011)

    Google Scholar 

  3. M.P. Mills, The cloud begins with coal. Report, Digital Power Group (2013)

    Google Scholar 

  4. Editorial smart thinking. Nature 458, 125–126 (2009)

    Google Scholar 

  5. World energy needs and nuclear power (2012), http://www.world-nuclear.org/info/inf16.html. Accessed 10 Dec 2012

  6. J. Beyea, The smart electricity grid and scientific research. Science 328(5981), 979–980 (2010)

    Google Scholar 

  7. F. Saffre, R. Gedge, Demand-side management for the smart grid, in Proceedings of IEEE/IFIP Network Operations and Management Symposium Workshops (NOMS) (2010), pp. 300–303

    Google Scholar 

  8. M.A. Marsan, L. Chiaraviglio, D. Ciullo, M. Meo, Optimal energy savings in cellular access networks, in 2009 IEEE International Conference on Communications Workshops, ICC Workshops 2009 (2009), pp. 1–5

    Google Scholar 

  9. S. Zhou, J. Gong, Z. Yang, Z. Niu, P. Yang, Green mobile access network with dynamic base station energy saving. Proc of ACM MobiCom 9(262), 10–12 (2009)

    Google Scholar 

  10. S. Yinbiao, K. Lee, P. Lanctot, F. Jianbin, H. Hao, B. Chow, J-P. Desbenoit, G. Stephan, L. Hui, X. Guodong, S. Chen, D. Faulk, T. Kaiser, H. Satoh, O. Jinsong, W. Linkun, W. Shou, Z. Yan, S. Junping, Y. Haibin, Z. Peng L. Dong, W. Qin, Internet of things: wireless sensor networks. White paper, International Electrotechnical Commission (2014)

    Google Scholar 

  11. M. Erol-Kantarci, H.T. Mouftah, Wireless sensor networks for cost-efficient residential energy management in the smart grid. IEEE Trans. Smart Grid 2(2), 314–325 (2011)

    Google Scholar 

  12. R. Yu, T. Watteyne, Reliable, low power wireless sensor networks for the internet of things: making wireless sensors as accessible as web servers. White paper, Linear Technology (2013)

    Google Scholar 

  13. Markets & Markets. Internet of things (IoT) & machine-to-machine (M2M) communication market by technologies & platforms (RFID, sensor nodes, gateways, cloud management, NFC, CEP, SCADA, ZigBee), M2M connections, IOT components - worldwide market forecasts (2014–2019). Top Market Reports TC 2351, Markets & Markets (2014)

    Google Scholar 

  14. F. Saffre, H. Hildmann, J.-L. Deneubourg, Can individual heterogeneity influence self-organised patterns in the termite nest construction model? Swarm Intell. 12, 101 (2017)

    Google Scholar 

  15. N. Gershenfeld, S. Samouhos, B. Nordman, Intelligent infrastructure for energy efficiency. Science 327(5969), 1086–1088 (2010)

    Google Scholar 

  16. F. Saffre, H. Hildmann, Don’t step on the distribution’s tail (investigating the impact of random fluctuations on efficient resource utilization), in Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, ed. by M. Paprzycki, M. Ganzha, L. Maciaszek. Annals of Computer Science and Information Systems, vol. 2 (IEEE, 2014), pp. 1525–1527

    Google Scholar 

  17. L. Chen, D. Yuan, Mathematical modeling for optimal design of in-building distributed antenna systems. Comput. Netw. 57(17), 3428–3445 (2013)

    Google Scholar 

  18. K. Hiltunen, B. Olin, M. Lundevall, Using dedicated in-building systems to improve HSDPA indoor coverage and capacity, in 61st IEEE Conference on Vehicular Technology (2005), pp. 2379–2383

    Google Scholar 

  19. D. Adjiashvili, S. Bosio, Y. Li, D. Yuan, Exact and approximation algorithms for optimal equipment selection in deploying in-building distributed antenna systems. IEEE Trans. Mob. Comput. 14(4), 702–713 (2015)

    Google Scholar 

  20. J.J. Bartholdi, D.D. Eisenstein, A production line that balances itself. Oper. Res. 44(1), 21–34 (1996)

    Google Scholar 

  21. E. Bonabeau, M. Dorigo, G. Theraulaz, Inspiration for optimization from social insect behaviour. Nature 406, 39–42 (2000)

    Google Scholar 

  22. S. Navlakha, Z. Bar-Joseph, Algorithms in nature: the convergence of systems biology and computational thinking. Mol. Syst. Biol. 7 (2011)

    Google Scholar 

  23. S. Camazine, J.-L. Deneubourg, N.R. Franks, J. Sneyd, G. Theraulaz, E. Bonabeau, Self-Organization in Biological Systems (Princeton University Press, Princeton, 2001)

    Google Scholar 

  24. A. Mugler, A.G. Bailey, K. Takahashi, P.R. ten Wolde, Membrane clustering and the role of rebinding in biochemical signaling. Biophys. J. 102(5), 1069–1078 (2012)

    Google Scholar 

  25. J. Halloy, G. Sempo, G. Caprari, C. Rivault, M. Asadpour, F. Tâche, I. Saïd, V. Durier, S. Canonge, J.M. Amé, C. Detrain, N. Correll, A. Martinoli, F. Mondada, R. Siegwart, J.L. Deneubourg, Social integration of robots into groups of cockroaches to control self-organized choices. Science 318(5853), 1155–1158 (2007)

    Google Scholar 

  26. M. Macaš, B. Gabrys, D. Ruta, L. Thotská, Particle swarm optimization of multiple classifier systems, in 9th International Work-Conference on Artificial Neural Networks (2007), pp. 333–340

    Google Scholar 

  27. L-p. Zhou, B. Li, F. Wang, Particle swarm optimization model of distributed network planning. JNW 8(10), 2263–2268 (2013)

    Google Scholar 

  28. X.H. You, D.M. Wang, B. Sheng, X.Q. Gao, X.S. Zhao, M. Chen, Cooperative distributed antenna systems for mobile communications [coordinated and distributed mimo]. IEEE Wirel. Commun. 17(3), 35–43 (2010)

    Google Scholar 

  29. T.L. Marzetta, Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9(11), 3590–3600 (2010)

    Google Scholar 

  30. Q. Sun, S. Jin, J. Wang, Y. Zhang, X. Gao, K.K. Wong, On scheduling for massive distributed MIMO downlink, in 2013 IEEE Global Communications Conference (GLOBECOM) (2013), pp. 4151–4156

    Google Scholar 

  31. H. Ren, N. Liu, C. Pan, C. He, Energy efficiency optimization for MIMO distributed antenna systems. IEEE Trans. Veh. Technol. PP(99), 1–1 (2016)

    Google Scholar 

  32. H. Beijner, The importance of in-building solutions in third-generation networks (Ericson, 2004). Ericson Review 2

    Google Scholar 

  33. R. Atawia, M. Ashour, T. El Shabrawy, H. Hammad, Indoor distributed antenna system planning with optimized antenna power using genetic algorithm, in 2013 IEEE 78th Vehicular Technology Conference (VTC Fall) (2013), pp. 1–6

    Google Scholar 

  34. D.Y. Atia, Indoor distributed antenna systems deployment optimization with particle swarm optimization. M.Sc. thesis, Khalifa University of Science, Technology and Research (2015)

    Google Scholar 

  35. T. Paulden, D.K. Smith, Developing new locality results for the Prüfer code using a remarkable linear-time decoding algorithm. Electron. J. Comb. 14 (2007)

    Google Scholar 

  36. C.W. Borchardt, über eine Interpolationsformel für eine Art symmetrischer Funktionen und über deren Anwendung. In Math. Abh. Akad. Wiss. zu Berlin (Berlin, 1860), pp. 1–20

    Google Scholar 

  37. A. Cayley, On the theory of the analytical forms called trees. Philos. Mag. 13, 172–6 (1857)

    Google Scholar 

  38. A. Cayley, Cambridge Library Collection - Mathematics, vol. 13 (Cambridge University Press, Cambridge, 2009), p. 2628

    Google Scholar 

  39. A. Berdahl, C.J. Torney, C.C. Ioannou, J.J. Faria, I.D. Couzin, Emergent sensing of complex environments by mobile animal groups. Science 339(6119), 574–576 (2013)

    Google Scholar 

  40. S. Lim, D. Rus, Stochastic distributed multi-agent planning and applications to traffic. ICRA 2873–2879 (IEEE, 2012)

    Google Scholar 

  41. F. Saffre, R. Furey, B. Krafft, J.-L. Deneubourg, Collective decision-making in social spiders: dragline-mediated amplification process acts as a recruitment mechanism. J. Theor. Biol. 198, 507–517 (1999)

    Google Scholar 

  42. C. Anderson, J.J. Boomsma, J.J. Bartholdi, Task partitioning in insect societies bucket brigades. Insectes Sociaux 49, 171–180 (2002)

    Google Scholar 

  43. H. Hildmann, S. Nicolas, F. Saffre, A bio-inspired resource-saving approach to dynamic client-server association. IEEE Intell. Syst. 27(6), 17–25 (2012)

    Google Scholar 

  44. R. Schoonderwoerd, J.L. Bruten, O.E. Holland, L.J.M. Rothkrantz, Ant-based load balancing in telecommunications networks. Adapt. Behav. 5(2), 169–207 (1996)

    Google Scholar 

  45. E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute Studies on the Sciences of Complexity (Oxford University Press, USA, 1999)

    Google Scholar 

  46. J. Werfel, K. Petersen, R. Nagpal, Designing collective behavior in a termite-inspired robot construction team. Science 343(6172), 754–758 (2014)

    Google Scholar 

  47. F. Ducatelle, G.A. Di Caro, L.M. Gambardella, Principles and applications of swarm intelligence for adaptive routing in telecommunications networks. Swarm Intell. 4(3), 173–198 (2010)

    Google Scholar 

  48. B. Gabrys, D. Ruta, Genetic algorithms in classifier fusion. Appl. Soft Comput. 6(4), 337–347 (2006)

    Google Scholar 

  49. D. Renfrew, X.H. Yu, Traffic signal control with swarm intelligence, in 2009 Fifth International Conference on Natural Computation, vol. 3 (2009), pp. 79–83

    Google Scholar 

  50. P. Kuila, P.K. Jana, Energy efficient clustering and routing algorithms for wireless sensor networks: particle swarm optimization approach. Eng. Appl. Artif. Intell. 33, 127–140 (2014)

    Google Scholar 

  51. R.-J. Ma, N.-Y. Yu, J.-Y. Hu, Application of particle swarm optimization algorithm in the heating system planning problem. Sci. World J. (2013)

    Google Scholar 

  52. H. Prüfer, Neuer Beweis eines Satzes über Permutationen. Archiv der Mathematik und Physik 27, 742–744 (1918)

    Google Scholar 

  53. B.A. Julstrom, Quick decoding and encoding of prfer strings: exercises in data structures (2005)

    Google Scholar 

  54. J. Gottlieb, B.A. Julstrom, G.R. Raidl, F. Rothlauf, Prüfer numbers: a poor representation of spanning trees for evolutionary search, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001) (Morgan Kaufmann Publishers, San Francisco, California, 2001), pp. 343–350

    Google Scholar 

  55. H. Hildmann, D. Ruta, D.Y. Atia, A.F. Isakovic, Using branching-property preserving Prüfer code to encode solutions for particle swarm optimization, in 2017 Federated Conference on Computer Science and Information Systems (FedCSIS) (Prague, Czech Republic, 2017)

    Google Scholar 

  56. D.Y. Atia, D. Ruta, K. Poon, A. Ouali, A.F. Isakovic, Cost effective, scalable design of indoor distributed antenna systems based on particle swarm optimization and prufer strings, in IEEE Proceedings of 2016 IEEE Congress on Evolutionary Computation (Vancouver, Canada, 2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by UAE ICT Fund, and in part, by Khalifa Semiconductor Research Center and the Semiconductor Research Corporation under the Abu Dhabi SRC Center of Excellence on Energy-Efficient Electronic Systems (\(ACE^{4}S\)), Contract 2013 HJ2440. We acknowledge A. Ouali for his helpful remarks and F. Saffre for early stimulating discussions about the role of naturally inspired computing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Isakovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hildmann, H., Atia, D.Y., Ruta, D., Poon, K., Isakovic, A.F. (2019). Nature-Inspired? Optimization in the Era of IoT: Particle Swarm Optimization (PSO) Applied to Indoor-Distributed Antenna Systems (I-DAS). In: Elfadel, I., Ismail, M. (eds) The IoT Physical Layer. Springer, Cham. https://doi.org/10.1007/978-3-319-93100-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93100-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93099-2

  • Online ISBN: 978-3-319-93100-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics