Skip to main content

Denoising Time Series Data Using Asymmetric Generative Adversarial Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10939))

Abstract

Denoising data is a preprocessing step for several time series mining algorithms. This step is especially important if the noise in data originates from diverse sources. Consequently, it is commonly used in biomedical applications that use Electroencephalography (EEG) data. In EEG data noise can occur due to ocular, muscular and cardiac activities. In this paper, we explicitly learn to remove noise from time series data without assuming a prior distribution of noise. We propose an online, fully automated, end-to-end system for denoising time series data. Our model for denoising time series is trained using unpaired training corpora and does not need information about the source of the noise or how it is manifested in the time series. We propose a new architecture called AsymmetricGAN that uses a generative adversarial network for denoising time series data. To analyze our approach, we create a synthetic dataset that is easy to visualize and interpret. We also evaluate and show the effectiveness of our approach on an existing EEG dataset.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bashivan, P., Rish, I., Yeasin, M., Codella, N.: Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448 (2015)

  2. Daly, I., Nicolaou, N., Nasuto, S.J., Warwick, K.: Automated artifact removal from the electroencephalogram: a comparative study. Clin. EEG Neurosci. 44(4), 291–306 (2013)

    Article  Google Scholar 

  3. Fitzgibbon, S.P., Powers, D.M., Pope, K.J., Clark, C.R.: Removal of EEG noise and artifact using blind source separation. J. Clin. Neurophysiol. 24(3), 232–243 (2007)

    Article  Google Scholar 

  4. Galteri, L., Seidenari, L., Bertini, M., Del Bimbo, A.: Deep generative adversarial compression artifact removal. arXiv preprint arXiv:1704.02518 (2017)

  5. Gandhi, S., Oates, T., Boedihardjo, A., Chen, C., Lin, J., Senin, P., Frankenstein, S., Wang, X.: A generative model for time series discretization based on multiple normal distributions. In: Proceedings of the 8th Workshop on Ph.D. Workshop in Information and Knowledge Management, pp. 19–25. ACM (2015)

    Google Scholar 

  6. Gao, J., Sultan, H., Hu, J., Tung, W.W.: Denoising nonlinear time series by adaptive filtering and wavelet shrinkage: a comparison. IEEE Sig. Process. Lett. 17(3), 237–240 (2010)

    Article  Google Scholar 

  7. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  8. Jafari, A., Gandhi, S., Konuru, S.H., Hairston, W.D., Oates, T., Mohsenin, T.: An EEG artifact identification embedded system using ICA and multi-instance learning. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4. IEEE (2017)

    Google Scholar 

  9. Lawhern, V., Hairston, W.D., McDowell, K., Westerfield, M., Robbins, K.: Detection and classification of subject-generated artifacts in EEG signals using autoregressive models. J. Neurosci. Methods 208(2), 181–189 (2012)

    Article  Google Scholar 

  10. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series. Data Min. Knowl. Disc. 15(2), 107–144 (2007)

    Article  MathSciNet  Google Scholar 

  11. Ocbagabir, H.T., Aboalayon, K.A., Faezipour, M.: Efficient EEG analysis for seizure monitoring in epileptic patients. In: 2013 IEEE Long Island Systems, Applications and Technology Conference (LISAT), pp. 1–6. IEEE (2013)

    Google Scholar 

  12. Seneviratne, U., Mohamed, A., Cook, M., D’Souza, W.: The utility of ambulatory electroencephalography in routine clinical practice: a critical review. Epilepsy Res. 105(1), 1–12 (2013)

    Article  Google Scholar 

  13. Tracey, B.H., Miller, E.L.: Nonlocal means denoising of ECG signals. IEEE Trans. Biomed. Eng. 59(9), 2383–2386 (2012)

    Article  Google Scholar 

  14. Turner, J., Page, A., Mohsenin, T., Oates, T.: Deep belief networks used on high resolution multichannel electroencephalography data for seizure detection. In: 2014 AAAI Spring Symposium Series (2014)

    Google Scholar 

  15. Urigüen, J.A., Garcia-Zapirain, B.: EEG artifact removal state-of-the-art and guidelines. J. Neural Eng. 12(3), 031001 (2015)

    Article  Google Scholar 

  16. Vaughan, T.M., Heetderks, W., Trejo, L., Rymer, W., Weinrich, M., Moore, M., Kübler, A., Dobkin, B., Birbaumer, N., Donchin, E., et al.: Brain-computer interface technology: a review of the second international meeting (2003)

    Google Scholar 

  17. Wang, Z., Oates, T.: Imaging time-series to improve classification and imputation. arXiv preprint arXiv:1506.00327 (2015)

  18. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 1578–1585. IEEE (2017)

    Google Scholar 

  19. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Gandhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gandhi, S., Oates, T., Mohsenin, T., Hairston, D. (2018). Denoising Time Series Data Using Asymmetric Generative Adversarial Networks. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10939. Springer, Cham. https://doi.org/10.1007/978-3-319-93040-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93040-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93039-8

  • Online ISBN: 978-3-319-93040-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics