Skip to main content

Mining Relations from Unstructured Content

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10938))

Included in the following conference series:

Abstract

Extracting relations from unstructured Web content is a challenging task and for any new relation a significant effort is required to design, train and tune the extraction models. In this work, we investigate how to obtain suitable results for relation extraction with modest human efforts, relying on a dynamic active learning approach. We propose a method to reliably generate high quality training/test data for relation extraction - for any generic user-demonstrated relation, starting from a few user provided examples and extracting valuable samples from unstructured and unlabeled Web content. To this extent we propose a strategy which learns how to identify the best order to human-annotate data, maximizing learning performance early in the process. We demonstrate the viability of the approach (i) against state of the art datasets for relation extraction as well as (ii) a real case study identifying text expressing a causal relation between a drug and an adverse reaction from user generated Web content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://surdeanu.info/kbp2013/.

  2. 2.

    In our experiments we use pairs of entities, however we should note that our models can handle n-ary relations as well. We leave this to future work.

  3. 3.

    The size of the batch is adjustable, the human-in-the-loop can specify it. In our experiments, the involved medical doctor indicated 100 as a good size in terms of keeping focus.

  4. 4.

    http://doi.org/10.4225/08/570FB102BDAD2.

  5. 5.

    https://github.com/Isminoula/CausalADEs.

  6. 6.

    On a Linux server with 48 Intel Xeon CPUs @2.20GHz, 231GBs RAM, NVIDIA GeForce GTX 1080 GPU, on causalADE task albl (the libact implementation https://github.com/ntucllab/libact) took 3hrs-10mins, our pruning method took 7 min.

References

  1. Adel, H., Roth, B., Schütze, H.: Comparing convolutional neural networks to traditional models for slot filling. In: NAACL-HLT (2016)

    Google Scholar 

  2. Alba, A., Coden, A., Gentile, A.L., Gruhl, D., Ristoski, P., Welch, S.: Language agnostic dictionary extraction. In: ISWC (ISWC-PD-Industry). CEUR Workshop Proceedings, vol. 1963 (2017)

    Google Scholar 

  3. Angeli, G., Tibshirani, J., Wu, J., Manning, C.D.: Combining distant and partial supervision for relation extraction. In: EMNLP, pp. 1556–1567 (2014)

    Google Scholar 

  4. Arora, S., Liang, Y., Ma, T.: A simple but tough-to-beat baseline for sentence embeddings. In: ICLR (2017)

    Google Scholar 

  5. Augenstein, I., Maynard, D., Ciravegna, F.: Distantly supervised web relation extraction for knowledge base population. Semant. Web 7(4), 335–349 (2016)

    Article  Google Scholar 

  6. Bengio, Y.: Curriculum learning. In: ICML (2009)

    Google Scholar 

  7. Bunescu, R.C., Mooney, R.J.: A shortest path dependency kernel for relation extraction. In: HLT/EMNLP, pp. 724–731. ACL (2005)

    Google Scholar 

  8. Culotta, A., Sorensen, J.: Dependency tree kernels for relation extraction. In: ACL, p. 423. ACL (2004)

    Google Scholar 

  9. Donmez, P., Carbonell, J.G., Bennett, P.N.: Dual strategy active learning. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 116–127. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74958-5_14

    Chapter  Google Scholar 

  10. Fu, L., Grishman, R.: An efficient active learning framework for new relation types. In: IJCNLP, pp. 692–698 (2013)

    Google Scholar 

  11. Gal, Y., Islam, R., Ghahramani, Z.: Deep bayesian active learning with image data. In: ICML (2017)

    Google Scholar 

  12. Gentile, A.L., Zhang, Z., Augenstein, I., Ciravegna, F.: Unsupervised wrapper induction using linked data. In: K-CAP, pp. 41–48. ACM (2013)

    Google Scholar 

  13. Hendrickx, I., Kim, S.N., Kozareva, Z., Nakov, P., Ó Séaghdha, D., Padó, S., Pennacchiotti, M., Romano, L., Szpakowicz, S.: Semeval-2010 task 8: multi-way classification of semantic relations between pairs of nominals. In: DEW Workshop, pp. 94–99. ACL (2009)

    Google Scholar 

  14. Hsu, W., Lin, H.: Active learning by learning. In: Bonet, B., Koenig, S. (eds.) AAAI, pp. 2659–2665. AAAI Press (2015)

    Google Scholar 

  15. Huang, S.J., Jin, R., Zhou, Z.H.: Active learning by querying informative and representative examples. In: NIPS, pp. 892–900 (2010)

    Google Scholar 

  16. Ji, G., Liu, K., He, S., Zhao, J.: Distant supervision for relation extraction with sentence-level attention and entity descriptions. In: AAAI, pp. 3060–3066 (2017)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  18. Lewis, D.D., Catlett, J.: Heterogeneous uncertainty sampling for supervised learning. In: ICML, pp. 148–156 (1994)

    Chapter  Google Scholar 

  19. Liu, M.X.C.: Semantic relation classification via hierarchical recurrent neural network with attention. In: COLING (2016)

    Google Scholar 

  20. Mooney, R.J., Bunescu, R.C.: Subsequence kernels for relation extraction. In: NIPS, pp. 171–178 (2006)

    Google Scholar 

  21. Morgan, N., Bourlard, H.: Generalization and parameter estimation in feedforward nets: some experiments. In: NIPS, pp. 630–637 (1990)

    Google Scholar 

  22. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: ICML, pp. 807–814 (2010)

    Google Scholar 

  23. Nguyen, H.T., Smeulders, A.: Active learning using pre-clustering. In: ICML. ACM (2004)

    Google Scholar 

  24. Nguyen, T.H., Grishman, R.: Relation extraction: perspective from convolutional neural networks. In: VS@ HLT-NAACL, pp. 39–48 (2015)

    Google Scholar 

  25. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: EMNLP, vol. 14, pp. 1532–1543 (2014)

    Google Scholar 

  26. Ratner, A.J., Sa, C.D., Wu, S., Selsam, D., Ré, C.: Data programming: creating large training sets, quickly. In: NIPS, pp. 3567–3575 (2016)

    Google Scholar 

  27. Roth, B., Barth, T., Wiegand, M., Klakow, D.: A survey of noise reduction methods for distant supervision. In: AKBC, pp. 73–78. ACM (2013)

    Google Scholar 

  28. Settles, B.: Active learning literature survey. Univ. Wis. Madison 52(55–66), 11 (2010)

    Google Scholar 

  29. Stanovsky, G., Gruhl, D., Mendes, P.: Recognizing mentions of adverse drug reaction in social media using knowledge-infused recurrent models. In: EACL, pp. 142–151. ACL (2017)

    Google Scholar 

  30. Sterckx, L., Demeester, T., Deleu, J., Develder, C.: Using active learning and semantic clustering for noise reduction in distant supervision. In: AKBC at NIPS, pp. 1–6 (2014)

    Google Scholar 

  31. Vu, N.T., Adel, H., Gupta, P., et al.: Combining recurrent and convolutional neural networks for relation classification. In: NAACL-HLT, pp. 534–539 (2016)

    Google Scholar 

  32. Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction. J. Mach. Learn. Res. 3, 1083–1106 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J., et al.: Relation classification via convolutional deep neural network. In: COLING, pp. 2335–2344 (2014)

    Google Scholar 

  34. Zhao, S., Grishman, R.: Extracting relations with integrated information using kernel methods. In: ACL, pp. 419–426. ACL (2005)

    Google Scholar 

  35. Zhou, P., Shi, W., Tian, J., Qi, Z., Li, B., Hao, H., Xu, B.: Attention-based bidirectional long short-term memory networks for relation classification. In: ACL - Short Papers, vol. 2, pp. 207–212 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Lisa Gentile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lourentzou, I., Alba, A., Coden, A., Gentile, A.L., Gruhl, D., Welch, S. (2018). Mining Relations from Unstructured Content. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10938. Springer, Cham. https://doi.org/10.1007/978-3-319-93037-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93037-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93036-7

  • Online ISBN: 978-3-319-93037-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics