Skip to main content

Fuzzy Integral Optimization with Deep Q-Network for EEG-Based Intention Recognition

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10937))

Abstract

Non-invasive brain-computer interface using electroencephalography (EEG) signals promises a convenient approach empowering humans to communicate with and even control the outside world only with intentions. Herein, we propose to analyze EEG signals using fuzzy integral with deep reinforcement learning optimization to aggregate two aspects of information contained within EEG signals, namely local spatio-temporal and global temporal information, and demonstrate its benefits in EEG-based human intention recognition tasks. The EEG signals are first transformed into a 3D format preserving both topological and temporal structures, followed by distinctive local spatio-temporal feature extraction by a 3D-CNN, as well as the global temporal feature extraction by an RNN. Next, a fuzzy integral with respect to the optimized fuzzy measures with deep reinforcement learning is utilized to integrate the two extracted information and makes a final decision. The proposed approach retains the topological and temporal structures of EEG signals and merges them in a more efficient way. Experiments on a public EEG-based movement intention dataset demonstrate the effectiveness and superior performance of our proposed method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.physionet.org/pn4/eegmmidb/.

  2. 2.

    www.bci2000.org.

References

  1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  2. Bashivan, P., Rish, I., Yeasin, M., Codella, N.: Learning representations from EEG with deep recurrent-convolutional neural networks. In: International Conference on Learning Representations (2016)

    Google Scholar 

  3. Zhang, X., Yao, L., Zhang, D., Wang, X., Sheng, Q., Gu, T.: Multi-person brain activity recognition via comprehensive EEG signal analysis. In: 14th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (2017)

    Google Scholar 

  4. Cecotti, H., Graser, A.: Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 433–445 (2011)

    Article  Google Scholar 

  5. Cavrini, F., Bianchi, L., Quitadamo, L.R., Saggio, G.: A fuzzy integral ensemble method in visual P300 brain-computer interface. Comput. Intell. Neurosci. 2016, 49 (2016)

    Article  Google Scholar 

  6. Yoo, B.S., Kim, J.H.: Fuzzy integral-based gaze control of a robotic head for human robot interaction. IEEE Trans. Cybern. 45(9), 1769–1783 (2015)

    Article  Google Scholar 

  7. Yoo, J.K., Kim, J.H.: Fuzzy integral-based gaze control architecture incorporated with modified-univector field-based navigation for humanoid robots. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(1), 125–139 (2012)

    Article  MathSciNet  Google Scholar 

  8. Shoaie, Z., Esmaeeli, M., Shouraki, S.B.: Combination of multiple classifiers with fuzzy integral method for classifying the EEG signals in brain-computer interface. In: International Conference on Biomedical and Pharmaceutical Engineering, ICBPE 2006, pp. 157–161. IEEE (2006)

    Google Scholar 

  9. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  10. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  11. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI 2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51(6), 1034–1043 (2004)

    Article  Google Scholar 

  12. Shenoy, H.V., Vinod, A.P., Guan, C.: Shrinkage estimator based regularization for EEG motor imagery classification. In: 2015 10th International Conference on Information, Communications and Signal Processing (ICICS), pp. 1–5. IEEE (2015)

    Google Scholar 

  13. Sita, J., Nair, G.: Feature extraction and classification of EEG signals for mapping motor area of the brain. In: 2013 International Conference on Control Communication and Computing (ICCC), pp. 463–468. IEEE (2013)

    Google Scholar 

  14. Schirrmeister, R.T., Springenberg, J.T., Fiederer, L.D.J., Glasstetter, M., Eggensperger, K., Tangermann, M., Hutter, F., Burgard, W., Ball, T.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017)

    Article  Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, D., Yao, L., Wang, S., Chen, K., Yang, Z., Benatallah, B. (2018). Fuzzy Integral Optimization with Deep Q-Network for EEG-Based Intention Recognition. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10937. Springer, Cham. https://doi.org/10.1007/978-3-319-93034-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93034-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93033-6

  • Online ISBN: 978-3-319-93034-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics