Skip to main content

Off-Line and On-Line Optimization Under Uncertainty: A Case Study on Energy Management

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2018)

Abstract

Optimization problems under uncertainty arise in many application areas and their solution is very challenging. We propose here methods that merge off-line and on-line decision stages: we start with a two stage off-line approach coupled with an on-line heuristic. We improve this baseline in two directions: (1) by replacing the on-line heuristics with a simple anticipatory method; (2) by making the off-line component aware of the on-line heuristic. Our approach is grounded on a virtual power plant management system, where the load shifts can be planned off-line and the energy balance should be maintained on-line. The overall goal is to find the minimum cost energy flows at each point in time considering (partially shiftable) electric loads, renewable and non-renewable energy generators, and electric storages. We compare our models with an oracle operating under perfect information and we show that both our improved models achieve a high solution quality, while striking different trade-offs in terms of computation time and complexity of the off-line and on-line optimization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at http://www.gurobi.com.

  2. 2.

    Available at https://www.gams.com/latest/docs/S_BARON.html.

  3. 3.

    Available at http://www.neos-server.org/neos/.

  4. 4.

    Available at https://data.lab.fiware.org/dataset/.

References

  1. Bai, H., Miao, S., Ran, X., Ye, C.: Optimal dispatch strategy of a virtual power plant containing battery switch stations in a unified electricity market. Energies 8(3), 2268–2289 (2015)

    Article  Google Scholar 

  2. Bent, R.W., Van Hentenryck, P.: Scenario-based planning for partially dynamic vehicle routing with stochastic customers. Oper. Res. 52(6), 977–987 (2004)

    Article  Google Scholar 

  3. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Series in Operations Research and Financial Engineering. Springer, New York (1997). https://doi.org/10.1007/978-1-4614-0237-4

    Book  MATH  Google Scholar 

  4. Bordin, C., Anuta, H.O., Crossland, A., Gutierrez, I.L., Dent, C.J., Vigo, D.: A linear programming approach for battery degradation analysis and optimization in offgrid power systems with solar energy integration. Renew. Energy 101, 417–430 (2017)

    Article  Google Scholar 

  5. Bracewell, R.N.: The Fourier Transform and its Applications, vol. 31999. McGraw-Hill, New York (1986)

    MATH  Google Scholar 

  6. De Filippo, A., Lombardi, M., Milano, M., Borghetti, A.: Robust optimization for virtual power plants. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F. (eds.) AI*IA 2017. LNCS, vol. 10640, pp. 17–30. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70169-1_2

    Chapter  Google Scholar 

  7. Espinosa, A.N., Ochoa, L.N.: Dissemination document “low voltage networks models and low carbon technology profiles”. Technical report, University of Manchester, June 2015

    Google Scholar 

  8. Gamou, S., Yokoyama, R., Ito, K.: Optimal unit sizing of cogeneration systems in consideration of uncertain energy demands as continuous random variables. Energy Convers. Manag. 43(9), 1349–1361 (2002)

    Article  Google Scholar 

  9. Van Hentenryck, P., Bent, R.: Online Stochastic Combinatorial Optimization. The MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  10. Hodge, B.-M., Lew, D., Milligan, M., Holttinen, H., Sillanpää, S., Gómez-Lázaro, E., Scharff, R., Söder, L., Larsén, X.G., Giebel, G., et al.: Wind power forecasting error distributions: an international comparison. In: 11th Annual International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants Conference (2012)

    Google Scholar 

  11. Jurković, K., Pandšić, H., Kuzle, I.: Review on unit commitment under uncertainty approaches. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pP. 1093–1097. IEEE (2015)

    Google Scholar 

  12. Kall, P., Wallace, S.W.: Stochastic Programming. Springer, Heidelberg (1994). ISBN 9780471951087

    MATH  Google Scholar 

  13. Kaut, M., Wallace, S.W.: Evaluation of scenario-generation methods for stochastic programming. Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik (2003)

    Google Scholar 

  14. Laporte, G., Louveaux, F.V.: The integer l-shaped method for stochastic integer programs with complete recourse. Oper. Res. Lett. 13(3), 133–142 (1993)

    Article  MathSciNet  Google Scholar 

  15. Mercier, L., Van Hentenryck, P.: Amsaa: a multistep anticipatory algorithm for online stochastic combinatorial optimization. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 173–187. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68155-7_15

    Chapter  MATH  Google Scholar 

  16. Morales, J.M., Conejo, A.J., Madsen, H., Pinson, P., Zugno, M.: Integrating Renewables in Electricity Markets: Operational Problems, vol. 205. Springer, Boston (2013). https://doi.org/10.1007/978-1-4614-9411-9

    Book  Google Scholar 

  17. Powell, W.B.: A unified framework for optimization under uncertainty. In: Optimization Challenges in Complex, Networked and Risky Systems, pp. 45–83. INFORMS (2016). https://doi.org/10.1287/educ.2016.0149

    Chapter  Google Scholar 

  18. Palma-Behnke, R., Benavides, C., Aranda, E., Llanos, J., Sez, D.: Energy management system for a renewable based microgrid with a demand side management mechanism. In: 2011 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG), pp. 1–8, April 2011

    Google Scholar 

  19. Reddy, S.S., Sandeep, V., Jung, C.-M.: Review of stochastic optimization methods for smart grid. Front. Energy 11(2), 197–209 (2017)

    Article  Google Scholar 

  20. Kaplanis, S., Kaplani, E.: A model to predict expected mean and stochastic hourly global solar radiation i(h; nj) values. Renew. Energy 32(8), 1414–1425 (2007)

    Article  Google Scholar 

  21. Sahinidis, N.V.: Optimization under uncertainty: state-of-the-art and opportunities. Comput. Chem. Eng. 28(6), 971–983 (2004). FOCAPO 2003 Special issue

    Article  Google Scholar 

  22. Shapiro, A.: Sample average approximation. In: Gass, S.I., Fu, M.C. (eds.) Encyclopedia of Operations Research and Management Science, pp. 1350–1355. Springer, Boston (2013). https://doi.org/10.1007/978-1-4419-1153-7

    Chapter  Google Scholar 

  23. Shapiro, A., Philpott, A.: A tutorial on stochastic programming. Manuscript (2007). www2.isye.gatech.edu/~ashapiro/publications.html

  24. Wallace, S.W., Fleten, S.-E.: Stochastic programming models in energy. In: Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10, pp. 637–677. Elsevier (2003)

    Google Scholar 

  25. Winston, W.L., Goldberg, J.B.: Operations Research: Applications and Algorithms, vol. 3. Thomson Brooks/Cole, Belmont (2004)

    Google Scholar 

  26. Zhou, Z., Zhang, J., Liu, P., Li, Z., Georgiadis, M.C., Pistikopoulos, E.N.: A two-stage stochastic programming model for the optimal design of distributed energy systems. Appl. Energy 103, 135–144 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allegra De Filippo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Filippo, A., Lombardi, M., Milano, M. (2018). Off-Line and On-Line Optimization Under Uncertainty: A Case Study on Energy Management. In: van Hoeve, WJ. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2018. Lecture Notes in Computer Science(), vol 10848. Springer, Cham. https://doi.org/10.1007/978-3-319-93031-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93031-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93030-5

  • Online ISBN: 978-3-319-93031-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics