Skip to main content

Soft-Regular with a Prefix-Size Violation Measure

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2018)

Abstract

In this paper, we propose a variant of the global constraint soft-regular by introducing a new violation measure that relates a cost variable to the size of the longest prefix of the assigned variables, which is consistent with the constraint automaton. This measure allows us to guarantee that first decisions (assigned variables) respect the rules imposed by the automaton. We present a simple algorithm, based on a Multi-valued Decision Diagram (MDD), that enforces Generalized Arc Consistency (GAC). We provide an illustrative case study on nurse rostering, which shows the practical interest of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: Proceedings of AAAI 1994, pp. 362–367 (1994)

    Google Scholar 

  2. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Math. Comput. Modell. 20(12), 97–123 (1994)

    Article  Google Scholar 

  3. Van Hentenryck, P., Carillon, J.-P.: Generality versus specificity: an experience with AI and OR techniques. In: Proceedings of AAAI 1988, pp. 660–664 (1988)

    Google Scholar 

  4. Régin, J.-C.: Generalized arc consistency for global cardinality constraint. In: Proceedings of AAAI 1996, pp. 209–215 (1996)

    Google Scholar 

  5. Hooker, J.N.: Integrated Methods for Optimization. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4614-1900-6

    Book  MATH  Google Scholar 

  6. Aggoun, A., Beldiceanu, N.: Extending chip in order to solve complex scheduling and placement problems. Math. Comput. Modell. 17(7), 57–73 (1993)

    Article  Google Scholar 

  7. Pesant, G.: A regular language membership constraint for finite sequences of variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8_36

    Chapter  MATH  Google Scholar 

  8. Schaus, P.: Variable objective large neighborhood search: a practical approach to solve over-constrained problems. In: 2013 IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 971–978. IEEE (2013)

    Google Scholar 

  9. van Hoeve, W.: Over-constrained problems. In: van Hentenryck, P., Milano, M. (eds.) Hybrid Optimization, pp. 191–225. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-1644-0_6

    Chapter  Google Scholar 

  10. Petit, T., Régin, J.-C., Bessière, C.: Specific filtering algorithms for over-constrained problems. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 451–463. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45578-7_31

    Chapter  Google Scholar 

  11. van Hoeve, W., Pesant, G., Rousseau, L.-M.: On global warming: flow-based soft global constraints. J. Heuristics 12(4–5), 347–373 (2006)

    Article  Google Scholar 

  12. He, J., Flener, P., Pearson, J.: Underestimating the cost of a soft constraint is dangerous: revisiting the edit-distance based soft regular constraint. J. Heuristics 19(5), 729–756 (2013)

    Article  Google Scholar 

  13. He, J., Flener, P., Pearson, J.: An automaton constraint for local search. Fundamenta Informaticae 107(2–3), 223–248 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Montanari, U.: Network of constraints: fundamental properties and applications to picture processing. Inf. Sci. 7, 95–132 (1974)

    Article  MathSciNet  Google Scholar 

  15. Dechter, R.: Constraint Processing. Morgan Kaufmann, Burlington (2003)

    MATH  Google Scholar 

  16. Lecoutre, C.: Constraint Networks: Techniques and Algorithms. ISTE/Wiley, Hoboken (2009)

    Book  Google Scholar 

  17. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from constraint checkers. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 107–122. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8_11

    Chapter  MATH  Google Scholar 

  18. Hadzic, T., Hansen, E.R., O’Sullivan, B.: On automata, MDDs and BDDs in constraint satisfaction. In: Proceedings of ECAI 2008 Workshop on Inference methods based on Graphical Structures of Knowledge (2008)

    Google Scholar 

  19. Cheng, K., Yap, R.: An MDD-based generalized arc consistency algorithm for positive and negative table constraints and some global constraints. Constraints 15(2), 265–304 (2010)

    Article  MathSciNet  Google Scholar 

  20. Perez, G., Régin, J.-C.: Improving GAC-4 for table and MDD constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 606–621. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_44

    Chapter  Google Scholar 

  21. Perez, G., Régin, J.-C.: Soft and cost MDD propagators. In: Proceedings of AAAI 2017, pp. 3922–3928 (2017)

    Google Scholar 

  22. Khong, M.T., Deville, Y., Schaus, P., Lecoutre, C.: Efficient reification of table constraints. In: 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE (2017)

    Google Scholar 

  23. Burke, E., De Causmaecker, P., Berghe, G.V., Van Landeghem, H.: The state of the art of nurse rostering. J. Sched. 7(6), 441–499 (2004)

    Article  MathSciNet  Google Scholar 

  24. Ernst, A., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: a review of applications, methods and models. Eur. J. Oper. Res. 153(1), 3–27 (2004)

    Article  MathSciNet  Google Scholar 

  25. Curtois, T., Qu, R.: Computational results on new staff scheduling benchmark instances. Technical report, ASAP Research Group, School of Computer Science, University of Nottingham, 06 October 2014

    Google Scholar 

  26. Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2_30

    Chapter  Google Scholar 

Download references

Acknowledgments

The first author is supported by the FRIA-FNRS. The second author is supported by the project CPER Data from the “Hauts-de-France”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minh Thanh Khong , Christophe Lecoutre , Pierre Schaus or Yves Deville .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khong, M.T., Lecoutre, C., Schaus, P., Deville, Y. (2018). Soft-Regular with a Prefix-Size Violation Measure. In: van Hoeve, WJ. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2018. Lecture Notes in Computer Science(), vol 10848. Springer, Cham. https://doi.org/10.1007/978-3-319-93031-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93031-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93030-5

  • Online ISBN: 978-3-319-93031-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics