Skip to main content

Epiphytic Trees: Relational Consistency Applied to Global Optimization Problems

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2018)

Abstract

Much effort has been spent to identify classes of CSPs in terms of the relationship between network structure and the amount of consistency that guarantees a backtrack-free solution. In this paper, we address Numerical Constrained global Optimization Problems (NCOPs) encoded as ternary networks, characterizing a class of such problems for which a combination of Generalized Arc-Consistency (GAC) and Relational Arc-Consistency (RAC) is sufficient to ensure a backtrack-free solution, called Epiphytic Trees. While GAC is a domain filtering technique, enforcing RAC creates new constraints in the network. Alternatively, we propose a branch and bound method to achieve a relaxed form of RAC, thus finding an approximation of the solution of NCOPs. We empirically show that Epiphytic Trees are relevant in practice. In addition, we extend this class to cover all ternary NCOPs, for which Strong Directional Relational k-Consistency ensures a backtrack-free solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As occur with the network \(x_1=x_2\) and \(x_1=0.5 \cdot x_2\), where only the box \(B = ([0,0], [0,0])\) turns both the constraints GAC but the contractor does an endless bisection on any initial arbitrary box.

  2. 2.

    Obtained by encoding NCOPs.

  3. 3.

    The same problem occurs with the results of Freuder [21] and Jégou [26]: achieving (hyper-)k-consistency creates new constraints of arity \(k-1\) thus changing the width of the (hyper)graph.

  4. 4.

    Given \(B, B' \in \mathbb {I}^n\) and an interval function \(\mathcal {F}\), if \(B' \subseteq B\), then \(\mathcal {F}(B') \subseteq \mathcal {F}(B)\).

  5. 5.

    Using an AC-3 [31] style algorithm with an iteration counter to avoid looping.

  6. 6.

    A variant of 3-relational consistency where the consistency is considered with relation to two variables instead of one (see [15]).

References

  1. Araya, I., Reyes, V.: Interval branch-and-bound algorithms for optimization and constraint satisfaction: a survey and prospects. J. Glob. Optim. 65(4), 837–866 (2016)

    Article  MathSciNet  Google Scholar 

  2. Araya, I., Trombettoni, G., Neveu, B., Chabert, G.: Upper bounding in inner regions for global optimization under inequality constraints. J. Glob. Optim. 60(2), 145–164 (2014)

    Article  MathSciNet  Google Scholar 

  3. van Beek, P., Dechter, R.: Constraint tightness and looseness versus local and global consistency. J. ACM 44(4), 549–566 (1997)

    Article  MathSciNet  Google Scholar 

  4. Benhamou, F., Granvilliers, L.: Continuos and interval constraints. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming. Foundations of Artificial Intelligence, pp. 569–601. Elsevier, New York (2006)

    MATH  Google Scholar 

  5. Benhamou, F., McAllester, D., van Hentenryck, P.: CLP (intervals) revisited. In: International Symposium on Logic Programming, pp. 124–138. MIT Press, Cambridge (1994)

    Google Scholar 

  6. Benhamou, F., Older, W.J.: Applying interval arithmetic to real, integer, and Boolean constraints. J. Logic Program. 32(1), 1–24 (1997)

    Article  MathSciNet  Google Scholar 

  7. Berge, C.: Graphs and Hypergraphs. Elsevier Science, Oxford (1985)

    MATH  Google Scholar 

  8. Bessiere, C., Stergiou, K., Walsh, T.: Domain filtering consistencies for non-binary constraints. Artif. Intell. 172(6), 800–822 (2008)

    Article  MathSciNet  Google Scholar 

  9. Bhurjee, A.K., Panda, G.: Efficient solution of interval optimization problem. Math. Methods Oper. Res. 76(3), 273–288 (2012)

    Article  MathSciNet  Google Scholar 

  10. Chabert, G., Trombettoni, G., Neveu, B.: New light on arc consistency over continuous domains. Technical report RR-5365, INRIA (2004)

    Google Scholar 

  11. Cohen, D.A., Jeavons, P.G.: The power of propagation: when GAC is enough. Constraints 22(1), 3–23 (2017)

    Article  MathSciNet  Google Scholar 

  12. Csendes, T., Ratz, D.: Subdivision direction selection in interval methods for global optimization. SIAM J. Numer. Anal. 34(3), 922–938 (1997)

    Article  MathSciNet  Google Scholar 

  13. Davis, E.: Constraint propagation with interval labels. Artif. Intell. 32(3), 281–331 (1987)

    Article  MathSciNet  Google Scholar 

  14. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)

    MATH  Google Scholar 

  15. Dechter, R., van Beek, P.: Local and global relational consistency. Theoret. Comput. Sci. 173(1), 283–308 (1997)

    Article  MathSciNet  Google Scholar 

  16. Dechter, R., Pearl, J.: Network-based heuristics for constraint-satisfaction problems. Artif. Intell. 34(1), 1–38 (1987)

    Article  MathSciNet  Google Scholar 

  17. Dechter, R., Rish, I.: Directional resolution: the Davis-Putnam procedure, revisited. In: 4th International Conference on Principles of Knowledge Representation and Reasoning, pp. 134–145. Morgan Kaufmann, San Francisco (1994)

    Chapter  Google Scholar 

  18. Faltings, B.: Arc-consistency for continuous variables. Artif. Intell. 65(2), 363–376 (1994)

    Article  MathSciNet  Google Scholar 

  19. Faltings, B., Gelle, E.M.: Local consistency for ternary numeric constraints. In: 15th International Joint Conference on Artificial Intelligence, pp. 392–397. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  20. Freuder, E.C.: Synthesizing constraint expressions. Commun. ACM 21(11), 958–966 (1978)

    Article  MathSciNet  Google Scholar 

  21. Freuder, E.C.: A sufficient condition for backtrack-free search. J. ACM 29(1), 24–32 (1982)

    Article  MathSciNet  Google Scholar 

  22. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable queries. J. Comput. Syst. Sci. 64(3), 579–627 (2002)

    Article  MathSciNet  Google Scholar 

  23. Gyssens, M.: On the complexity of join dependencies. ACM Trans. Database Syst. 11(1), 81–108 (1986)

    Article  MathSciNet  Google Scholar 

  24. Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis. Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, New York (2004)

    MATH  Google Scholar 

  25. van Hentenryck, P., McAllester, D., Kapur, D.: Solving polynomial systems using a branch and prune approach. SIAM J. Numer. Anal. 34(2), 797–827 (1997)

    Article  MathSciNet  Google Scholar 

  26. Jégou, P.: On the consistency of general constraint-satisfaction problems. In: 11th National Conference on Artificial Intelligence, pp. 114–119. AAAI Press, Washington, D.C. (1993)

    Google Scholar 

  27. Karakashian, S., Woodward, R.J., Reeson, C., Choueiry, B.Y., Bessiere, C.: A first practical algorithm for high levels of relational consistency. In: 24th AAAI Conference on Artificial Intelligence, pp. 101–107. AAAI Press, California (2010)

    Google Scholar 

  28. Kearfott, R.B.: An interval branch and bound algorithm for bound constrained optimization problems. J. Glob. Optim. 2(3), 259–280 (1992)

    Article  MathSciNet  Google Scholar 

  29. Lebbah, Y., Michel, C., Rueher, M.: An efficient and safe framework for solving optimization problems. J. Comput. Appl. Math. 199(2), 372–377 (2007)

    Article  MathSciNet  Google Scholar 

  30. Lhomme, O.: Consistency techniques for numeric CSPS. In: 13th International Joint Conference on Artificial Intelligence, pp. 232–238. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  31. Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118 (1977)

    Article  MathSciNet  Google Scholar 

  32. Mackworth, A.K.: On reading sketch maps. In: 5th International Joint Conference on Artificial Intelligence, pp. 598–606. Morgan Kaufmann, San Francisco (1977)

    Google Scholar 

  33. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2009)

    Book  Google Scholar 

  34. Moore, R.E.: Interval Analysis. Prentice-Hall, New Jersey (1966)

    MATH  Google Scholar 

  35. Neumaier, A.: Interval Methods for Systems of Equations. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  36. Neumaier, A., Shcherbina, O., Huyer, W., Vinkó, T.: A comparison of complete global optimization solvers. Math. Program. 103(2), 335–356 (2005)

    Article  MathSciNet  Google Scholar 

  37. Ninin, J., Messine, F., Hansen, P.: A reliable affine relaxation method for global optimization. 4OR 13(3), 247–277 (2015)

    Article  MathSciNet  Google Scholar 

  38. Ratschek, H., Rokne, J.: New Computer Methods for Global Optimization. Halsted Press, New York (1988)

    MATH  Google Scholar 

  39. Sam-Haroud, D., Faltings, B.: Consistency techniques for continuous constraints. Constraints 1(1), 85–118 (1996)

    Article  MathSciNet  Google Scholar 

  40. Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.-H., Nguyen, T.-V.: Benchmarking global optimization and constraint satisfaction codes. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) COCOS 2002. LNCS, vol. 2861, pp. 211–222. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39901-8_16

    Chapter  MATH  Google Scholar 

  41. Sidebottom, G., Havens, W.S.: Hierarchical arc consistency for disjoint real intervals in constraint logic programming. Comput. Intell. 8(4), 601–623 (1992)

    Article  Google Scholar 

  42. Trombettoni, G., Araya, I., Neveu, B., Chabert, G.: Inner regions and interval linearizations for global optimization. In: 25th AAAI Conference on Artificial Intelligence, pp. 99–104. AAAI Press, California (2011)

    Google Scholar 

  43. Van Hentenryck, P.: Numerica: a modeling language for global optimization. In: 15th International Joint Conference on Artificial Intelligence, pp. 1642–1647. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  44. Waltz, D.: Understanding line drawings of scenes with shadows. In: Winston, P.H. (ed.) The Psychology of Computer Vision, pp. 19–91. McGraw-Hill, New York (1975)

    Google Scholar 

Download references

Acknowledgments

This work was supported by CAPES - Brazilian Federal Agency for Support and Evaluation of Graduate Education within the Ministry of Education of Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Alex Derenievicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Derenievicz, G.A., Silva, F. (2018). Epiphytic Trees: Relational Consistency Applied to Global Optimization Problems. In: van Hoeve, WJ. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2018. Lecture Notes in Computer Science(), vol 10848. Springer, Cham. https://doi.org/10.1007/978-3-319-93031-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93031-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93030-5

  • Online ISBN: 978-3-319-93031-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics