Shaping System Innovation: Transformative Environmental Policies

  • Klaus JacobEmail author
Part of the Sustainability and Innovation book series (SUSTAINABILITY)


The paper explores if and how sustainability transformations are shaped by incremental environmental policies. Theories of transformation are rather pessimistic about possibilities to actually steer transformations to sustainability: political actors are considered as incumbents that would maintain the given regime or as being an object of transformation rather than protagonists of transformational change. Transformation is considered as a result of systemic, co-evolutionary processes from bottom up initiatives instead of purposeful governmental steering. In some contributions, there are calls for holistic, long term and integrated strategies, however, these disregard the actual capacities of states. The analysis of the dynamics of past transformations of societal systems does, however, open up options for governance in the context of transformation. The notion of niches and experimentation as starting points of transformations, the role of visions for accelerating transformation, the concept of actorness in transformation and the management of phase out of technologies and practices (exnovation) can build on experiences and examples of incremental environmental policies. Based on the analysis of theories of transformation on the one hand and theories of incremental policymaking on the other hand, a concept of transformative environmental policy is elaborated.


  1. Bakker, S., van Lente, H., & Meeus, M. (2011). Arenas of expectations for hydrogen technologies. Technological Forecasting and Social Change, 78, 152–162.CrossRefGoogle Scholar
  2. Bauknecht, D., Heinemann, C., Stronzik, M., & Schmitt, S. (2015). Austesten von regulatorischen Innovationen – das Instrument der Regulatorischen Innovationszone. Energiewirtschaftliche Tagesfragen, 65(7), 61–64.Google Scholar
  3. Baumgartner, F., & Jones, B. (1993). Agendas and instability in American politics. Chicago, IL: Chicago UP.Google Scholar
  4. Bergek, A., Jacobsson, S., Carlsson, B., Lindmark, S., & Rickne, A. (2008). Analyzing the functional dynamics of technological innovation systems: A scheme of analysis. Research Policy, 37(3), 407–429.CrossRefGoogle Scholar
  5. Berkhout, F. (2006). Normative expectations in systems innovation. Technology Analysis & Strategic Management, 18(3/4), 299–311.CrossRefGoogle Scholar
  6. Bleischwitz, R., & Jacob, K. (2011). Innovative Ressourcenpolitikansätze zur Gestaltung der Rahmenbedingungen – Ein Überblick. In P. Hennicke, K. Kristof, & T. Götz (Eds.), Aus weniger mehr machen – Strategien für eine nachhaltige Ressourcenpolitik in Deutschland. München: Oekom.Google Scholar
  7. Brand, U. (2016). “Transformation” as a new critical orthodoxy. The strategic use of the term “transformation” does not prevent multiple crisis. GAIA, 25(1), 23–27.CrossRefGoogle Scholar
  8. Cairney, P. (2013). What is evolutionary theory and how does it inform policy studies? Policy & Politics, 41(2), 279–298.CrossRefGoogle Scholar
  9. Chataway, J., Daniels, C., Kanger, L., Ramirez, M., Schot, J., & Steinmueller, E. (2017). Developing and enacting transformative innovation policy. A comparative study. Retrieved from
  10. Dimitropoulos, A., Oueslati, W., & Sintek, C. (2016). The rebound effect in road transport. Paris: OECD.Google Scholar
  11. Geels, F. W. (2002). Technological transitions as evolutionary reconfiguration processes: A multi-level perspective and a case-study. Research Policy, 31(8–9), 1257–1274. Scholar
  12. Geels, F. W., & Kemp, R. (2012). The multi-level perspective as a new perspective for studying sociotechnical transitions. In F. W. Geels, R. Kemp, G. Dudley, & G. Lyons (Eds.), Automobility in transition? A socio-technical analysis of sustainable transport. London: Routledge.Google Scholar
  13. Grießhammer, R., & Brohmann, B. (2016). Wie Transformationen und gesellschaftliche Innovationen gelingen können. Transformationsstrategien und models of change für nachhaltigen gesellschaftlichen Wandel. Baden-Baden: Nomos.Google Scholar
  14. Hall, P. (1993). Policy paradigms, social learning, and the state. Comparative Politics, 25(3), 275–293.CrossRefGoogle Scholar
  15. Haum, R., Jacob, K., & Hertin, J. (2010). Integration von Umwelt-, Innovations- und Industriepolitiken: Eine evaluation von Europäischen Strategien und Maßnahmen. In R. Steurer & R. Trattnigg (Eds.), Nachhaltigkeit regieren. Eine Bilanz zu Governance-Prinzipien und-Praktiken (pp. 97–120). München: Oekom.Google Scholar
  16. Heyen, D. A. (2016). Exnovation: Herausforderungen und politische Gestaltungsansätze für den Ausstieg aus nicht-nachhaltigen Strukturen. Berlin.
  17. Hinterberger, F., & Schmidt-Bleek, F. (1999). Dematerialization, MIPS and factor 10 physical sustainability indicators as a social device. Ecological Economics, 29(1), 53–56. Scholar
  18. Ingeborgrud, L. (2017). Visions as trading zones: National and local approaches to improving urban sustainability. Futures, 96, 57–67.CrossRefGoogle Scholar
  19. Jacob, K. (1998). Umweltpolitik by objectives? Ergebnisse und Überlegungen aus einer Evaluationsstudie der Chemikalienpolitik. Ökologisches Wirtschaften, 5, 27–29.Google Scholar
  20. Jacob, K. (2015). Greening des gesellschaftlichen Wandels. Ökologisches Wirtschaften, (3), 30.CrossRefGoogle Scholar
  21. Jacob, K., & Jänicke, M. (1998). Ökologische Innovationen in der chemischen Industrie: Umweltentlastung ohne Staat? Eine Untersuchung und Kommentierung zu 182 Gefahrenstoffen. Zeitschrift für Umweltpolitik & Umweltrecht, 21(4), 519–547.Google Scholar
  22. Jacob, K., Kannen, H., & Niestroy, I. (2015). An international comparison of sustainability strategies. In B. Stiftung (Ed.), Developing successful sustainability strategies: Strategies for a sustainable future in Germany, Europe and Worldwide. Gütersloh: Bertelsmann Stiftung.Google Scholar
  23. Jacob, K., Graaf, L., Wolff, F., & Heyen, D. A. (2018). Transformative Umweltpolitik: Ansätze zur Förderung gesellschaftlichen Wandels. Berlin: BMUB.Google Scholar
  24. Jänicke, M. (2012). Dynamic governance of clean-energy markets: How technical innovation could accelerate climate policies. Journal of Cleaner Production, 22, 50–59.CrossRefGoogle Scholar
  25. Jänicke, M., & Jacob, K. (2013). A third industrial revolution? In B. Siebenhüner, M. Arnold, K. Eisenack, & K. Jacob (Eds.), Long term governance for social ecological change (pp. 47–70). New York: Routledge.Google Scholar
  26. Jänicke, M., & Rennings, K. (2011). Ecosystem dynamics: The principle of co-evolution and success stories from climate policy. International Journal of Technology Policy and Management, 11(3/4), 198–219.CrossRefGoogle Scholar
  27. John, B., Withycombe Keeler, L., Wiek, A., & Lang, D. (2015). How much sustainability substance is in urban visions? An analysis of visioning projects in urban planning. Cities, 48, 86–98.CrossRefGoogle Scholar
  28. Kingdon, J. W. (1995). Agendas, alternatives and public policies (2nd ed.). New York: Harper & Collins.Google Scholar
  29. Knaggård, Å. (2014). What do policy-makers do with scientific uncertainty? The incremental character of Swedish climate change policy-making. Policy Studies, 35(1), 22–39. Scholar
  30. Kondratieff, N. D. (1926). Die langen Wellen der Konjunktur. Archiv für Sozialwissenschaften und Sozialpolitik, 56, 573–609.Google Scholar
  31. Konrad, K. (2006). The social dynamics of expectations: The interaction of collective and actor-specific expectations on electronic commerce and interactive television. Technology Analysis & Strategic Management, 18, 429–444.CrossRefGoogle Scholar
  32. Kowarsch, M. (2016). A pragmatist orientation for the social sciences in climate policy. How to make integrated economic assessments serve society. Berlin: Springer.CrossRefGoogle Scholar
  33. Leggewie, C., & Welzer, H. (2010). Cultural and societal requirements of The Great Transformations. Journal of Renewable and Sustainable Energy, 2(3), 1–13.CrossRefGoogle Scholar
  34. Lindberg, H. (2013). Knowledge and policy change (pp. 62–88). Newcastle upon Tyne: Cambridge Scholars Publishing.Google Scholar
  35. Lindblom, C. E. (1959). The science of “muddling through”. Public Administration Review, 19(2), 79–88. Scholar
  36. Loorbach, D. (2010). Transition management for sustainable development: A prescriptive, complexity-based governance framework. Governance: An International Journal of Policy, Administration, and Institutions, 23(1), 161–183.CrossRefGoogle Scholar
  37. Maeße, J. (2013). Ökonomie, Diskurs, Regierung. Globale Politische Ökonomie. Scholar
  38. Mayntz, R., & Scharpf, F. W. (1995). Der Ansatz des akteurzentrierten Institutionalismus. In R. Mayntz, F. W. Scharpf, & Max-Planck-Institut für Gesellschaftsforschung (Eds.), Gesellschaftliche Selbstregelung und Politische Steuerung, Schriften des Max-Planck-Instituts für Gesellschaftsforschung (Vol. 23, pp. 39–72). Frankfurt a. M.: Campus Verlag.Google Scholar
  39. McPhearson, T., Iwaniec, D. M., & Bai, X. (2016). Positive visions for guiding urban transformations toward sustainable futures. Current Opinion in Environmental Sustainability, 22, 33–40.CrossRefGoogle Scholar
  40. Nill, J. (2009). Ökologische Innovationspolitik. Eine evolutorisch-ökonomische Perspektive. Marburg: Metropolis.Google Scholar
  41. Rennings, K. (2000). Redefining innovation – eco-innovation research and the contribution from ecological economics. Ecological Economics, 32(2), 319–332. Scholar
  42. Rennings, K. (2014). Der mikro-ökonomische Rebound Effekt. Ergebnisse eines inter- und transdisziplinären Forschungsprojekts. Vortrag auf der Green Economy Konferenz des BMBF 18.11.2014.
  43. Rennings, K., Rammer, C., Oberndorfer, U., Jacob, K., & Boie, G. (2008). Instrumente zur Förderung von Umweltinnovationen. Bestandsaufnahme. In Bewertung und Defizitanalysen. Berlin: UBA und BMU.Google Scholar
  44. Sachverständigenrat für Umweltfragen (SRU). (2016). Umweltgutachten 2016. Impulse für eine integrative Umweltpolitik. Hg. v. SRU. Online verfügbar unter Zuletzt geprüft am 27.08.2017.
  45. Schot, J., & Geel, F. W. (2008). Strategic niche management and sustainable innovation journeys: theory, findings, research agenda, and policy. Technology Analysis & Strategic Management, 20(5), 537–554.CrossRefGoogle Scholar
  46. Schumpeter, J. A. (1942). Capitalism, socialism, and democracy. London: Harper & Brothers.Google Scholar
  47. Semmling, E., Peters, A., Marth, H., Kahlenborn, W., & de Haan, P. (2015). Rebound-Effekte: Ihre Bedeutung für die Umweltpolitik. Dessau: Adelphi-Consult.Google Scholar
  48. Sondeijker, S., Geurts, J., Rotmans, J., & Tukker, A. (2006). Imagining sustainability: the added value of transition scenarios in transition management. Foresight, 8(5), 15–30.CrossRefGoogle Scholar
  49. van Lente, H. (1993). Promising technology. The dynamics of expectations in technological developments. PhD Thesis, Enschede.Google Scholar
  50. Voß, J.-P., Bauknecht, D., & Kemp, R. (Eds.). (2006). Reflexive governance for sustainable development. Cheltenham: Edward Elgar.Google Scholar
  51. Vulturius, G., & Swartling, Å. (2015). Overcoming social barriers to learning and engagement with climate change adaptation: Experiences with Swedish forestry stakeholders. Scandinavian Journal of Forest Research, 30, 217–225.CrossRefGoogle Scholar
  52. WBGU. (2011). Welt im Wandel Gesellschaftsvertrag für eine Große Transformation. Berlin: WBGU.Google Scholar
  53. Weizsäcker, E. U., Lovins, A. B., & Lovins, H. L. (1995). Faktor Vier. Doppelter Wohlstand – halbierter Naturverbrauch (Der neue Bericht an den Club of Rome). München.Google Scholar
  54. Wiek, A., & Iwaniec, D. (2014). Quality criteria for visions and visioning in sustainability science. Sustainability Science, 9, 497–512.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Freie Universität Berlin, Forschungszentrum für Umweltpolitik (ffu)BerlinGermany

Personalised recommendations