Skip to main content

Countervailing Power with Large and Small Retailers

  • Chapter
  • First Online:
Frontiers of Dynamic Games

Abstract

When concentration in the retail market increases, retailers gain more market power towards the suppliers and they hence can achieve better wholesale prices. In the 1950s, Galbraith introduced the concept of countervailing power claiming that lower wholesale prices will pass on to consumer as lower retail prices. Consequently higher concentration may turn out to be beneficial for consumers. In this model where a monopolistic supplier sells an intermediate good to M large retailers who are Cournot competitors and a competitive fringe consisting of N retailers, we show that higher concentration does not decrease retail prices and results solely to a reallocation of profits between the supplier and large retailers, thus invalidating Galbraith’s conjecture. The same result carries on when the exogenously given level of bargaining power of large retailers increases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See for instance [9] and [10] and the references therein.

  2. 2.

    We use capital letters M and N to denote the set, the last element of the set or the cardinality of the set, depending on the context. We use small letters m and n to denote a typical element or an index of the set M and N respectively. So we adopt the convention M = {1, …, m, …, M} and N = {1, …, n, …, N}.

References

  1. Chen, Z.: Dominant retailers and the countervailing-power hypothesis. RAND J. Econ. 34, 612–25 (2003)

    Article  Google Scholar 

  2. Christou, C., Papadopoulos, K.G.: The countervailing power hypothesis in the dominant firm-competitive fringe model. Econ. Lett. 126, 110–113 (2015)

    Article  MathSciNet  Google Scholar 

  3. Competition Commission: Supermarkets: a report on the supply of groceries from multiple stores in the United Kingdom. Cm 4842 (2000)

    Google Scholar 

  4. Competition Commission: The supply of grocery in the UK market investigation: provisional findings report (2007)

    Google Scholar 

  5. Dobson, P.W., Waterson, M.: Countervailing power and consumer prices. Econ. J. 107(441), 418–30 (1997)

    Article  Google Scholar 

  6. Federal Trade Commission: Report on the FTC workshop on slotting allowances and other marketing practices in the grocery industry (2001)

    Google Scholar 

  7. Federal Trade Commission: Slotting allowances in the retail grocery industry: selected case studies in five product categories (2003)

    Google Scholar 

  8. Galbraith, J.K.: American Capitalism: The Concept of Countervailing Power. Houghton Mifflin, Boston (1952)

    Google Scholar 

  9. Gaudin, G.: Vertical bargaining and retail competition: what drives countervailing power? Econ. J. (2017). https://doi.org/10.1111/ecoj.12506

  10. Inderst, R., Mazzarotto, N.: Buyer power in distribution. In: Collins W.D. (ed.) ABA Antitrust Section Handbook Issues in Competition Law and Policy. ABA Book Publishing, Chicago (2008)

    Google Scholar 

  11. The European Commission: Buyer Power and Its Impact on Competition in the Food Retail Distribution Sector of the European Union, prepared by Dobson and Consulting, DGIV Study Contract No. IV/98/ETD/078 (1999)

    Google Scholar 

  12. Von Ungern-Sternberg, T.: Countervailing power revisited. Int. J. Ind. Organ. 12, 507–519 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

Konstantinos Papadopoulos gratefully acknowledges Research Grant no 87937 from the Aristotle University of Thessaloniki Research Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos G. Papadopoulos .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1.1 Derivation of the Reaction Function of the Large Retailer q m(Q m)

Using (1.4), the profit function of a Cournot retailer as defined in (1.5) can be written as

$$\displaystyle \begin{aligned} \begin{array}{rcl} \pi _{m} &\displaystyle =&\displaystyle [a-b(q_{m}+Q_{-m}+Q_{N}(q_{m}))-c_{m}-w_{m}]q_{m}-F_{m} \\ &\displaystyle =&\displaystyle \left[ a-b\left( q_{m}+Q_{-m}+\frac{N[a-b(Q_{-m}+q_{m})-w_{n}]}{k+bN} \right) -c_{m}-w_{m}\right] q_{m}-F_{m} \end{array} \end{aligned} $$

which we differentiate with respect to q m to obtain

$$\displaystyle \begin{aligned} \ q_{m}(Q_{-m})=\frac{ak-(c_{m}+w_{m})(k+bN)-bkQ_{-m}+bNw_{n}}{2bk}. \end{aligned}$$

1.1.2 Derivation of Bargaining Outcome (1.11) and (1.12)

Let \(\tilde {\pi }_{s}=Mw_{m}q_{m}+N(F_{n}+w_{n}q_{n})\) so that from (1.9) we can write \(\pi _{s}(F_{m},w_{m})=\tilde {\pi }_{s}+MF_{m}\). Let \( \tilde {\pi }_{m}=[p-c_{m}-w_{m}]q_{m}\) so that from (1.10) we can write \(\pi _{m}(F_{m,}w_{m})=\tilde {\pi }_{m}-F_{m}\). Cournot retailers are symmetric so \(\sum _{m-1}^{M}\gamma _{m}=M\gamma _{m}\) and given that \(\bar {\pi }_{m}=0\), (1.8) reduces to

$$\displaystyle \begin{aligned} \max_{\left( F_{m},w_{m}\right) }\left[ \tilde{\pi}_{s}+MF_{m}-\bar{\pi}_{s} \right] ^{\left( 1-M\gamma _{m}\right) }\left[ \tilde{\pi}_{m}-F_{m}\right] ^{M\gamma _{m}}. {} \end{aligned} $$
(1.14)

The first order condition with respect to F m is

$$\displaystyle \begin{aligned} \begin{array}{rcl} 0= &\displaystyle &\displaystyle M\left( 1-M\gamma _{m}\right) \left[ \tilde{\pi}_{s}+MF_{m}-\bar{\pi} _{s}\right] ^{-M\gamma _{m}}\left[ \tilde{\pi}_{m}-F_{m}\right] ^{M\gamma _{m}} \\ &\displaystyle &\displaystyle -M\gamma _{m}\left[ \tilde{\pi}_{s}+MF_{m}-\bar{\pi}_{s}\right] ^{\left( 1-M\gamma _{m}\right) }\left[ \tilde{\pi}_{m}-F_{m}\right] ^{(M\gamma _{m}-1)} \\ \Rightarrow &\displaystyle &\displaystyle \left( 1-M\gamma _{m}\right) /\gamma _{m}=(\tilde{\pi} _{s}+MF_{m}-\bar{\pi}_{s})/(\tilde{\pi}_{m}-F_{m}) \end{array} \end{aligned} $$

or

$$\displaystyle \begin{aligned} F_{m}=\tilde{\pi}_{m}-\gamma _{m}\left( M\tilde{\pi}_{m}+\tilde{\pi}_{s}- \bar{\pi}_{s}\right) . {} \end{aligned} $$
(1.15)

If we substitute \(\tilde {\pi }_{m}=[p-c_{m}-w_{m}]q_{m}\), \(\tilde {\pi } _{s}=Mw_{m}q_{m}+N(F_{n}+w_{n}q_{n})\) and \(\bar {\pi }_{s}=N(F_{n}+w_{n}q_{c})\) in (1.15) where q c = (a − w n)∕(k + bN) is the quantity sold at the market clearing retail price p c = (ak + bNw n)∕(k + bN) we end up with (1.11).

In order to find w m that solves (1.14), we introduce (1.15) in the objective function in (1.14) and we rearrange terms so that

$$\displaystyle \begin{aligned} &\left[ \tilde{\pi}_{s}+MF_{m}-\bar{\pi}_{s}\right] ^{\left( 1-M\gamma _{m}\right) }\left[ \tilde{\pi}_{m}-F_{m}\right] ^{M\gamma _{m}}\\ &\quad =[(1-M\gamma _{m})^{\left( 1-M\gamma _{m}\right) }\gamma _{m}^{M\gamma _{m}}]\left( M \tilde{\pi}_{m}+\tilde{\pi}_{s}-\bar{\pi}_{s}\right). \end{aligned} $$

Consequently, the maximization problem can be written as

$$\displaystyle \begin{aligned} \max_{w_{m}}M\tilde{\pi}_{m}+\tilde{\pi}_{s}-\bar{\pi}_{s} {} \end{aligned} $$
(1.16)

because \((1-M\gamma _{m})^{\left ( 1-M\gamma _{m}\right ) }\gamma _{m}^{\ M\gamma _{m}}\) is a constant. Notice also that \(\bar {\pi }_{s}\) does not depend on w m, so, in fact, w m maximizes the multilateral profits of the supplier with the M Cournot retailers (efficiency of Nash bargaining solution). So

$$\displaystyle \begin{aligned} \begin{array}{rcl} M\tilde{\pi}_{m}+\tilde{\pi}_{s}-\bar{\pi}_{s} &\displaystyle =&\displaystyle M(p-c_{m}-w_{m})q_{m}+Mw_{m}q_{m}+N(F_{n}+w_{n}q_{n})\\ &\displaystyle &\displaystyle -N(F_{n}+w_{n}q_{c}) \\ &\displaystyle =&\displaystyle M[p-c_{m}]q_{m}+Nw_{n}(q_{n}-q_{c}) \\ &\displaystyle =&\displaystyle M\left[ a-b(Mq_{m}(w_{m})+Nq_{n}(w_{m})-c_{m}\right] q_{m}(w_{m})\\ &\displaystyle &\displaystyle +Nw_{n}(q_{n}-q_{c}) \\ &\displaystyle =&\displaystyle NF_{n}+\frac{1}{bk(1+M)^{2}(k+bN)}Z \end{array} \end{aligned} $$

where \( Z=a^{2}k^{2}M+M(k+bN)^{2}(c_{m}+w_{m})(c_{m}-Mw_{m})+bMN(k+bN)[c_{m}(M-1)+2Mw_{m}]w_{n}-bN[k(1+M)^{2}+bM^{2}N]w_{n}^{2}+ak[M(k+bN)((M-1)w_{m}-2c_{m})+b(1+3M)Nw_{n}] \). The maximization of (1.16) with respect to w m will give (1.12).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Geronikolaou, G., Papadopoulos, K.G. (2018). Countervailing Power with Large and Small Retailers. In: Petrosyan, L., Mazalov, V., Zenkevich, N. (eds) Frontiers of Dynamic Games. Static & Dynamic Game Theory: Foundations & Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-92988-0_1

Download citation

Publish with us

Policies and ethics