Skip to main content

Halogen Contents of Mineralized Versus Unmineralized Potassic Igneous Rocks

  • Chapter
  • First Online:
  • 1072 Accesses

Part of the book series: Mineral Resource Reviews ((MIRERE))

Abstract

Recent studies have confirmed the important role of halogens (Cl, F) for the transport of metals in ore deposits related to igneous rocks. New data presented in this Chapter suggest that the halogen contents of mica phenocrysts from high-K igneous suites can be used, with due caution, as a measure of gold-copper mineralization potential in continental, post-collisional, and late oceanic island arcs worldwide. The threshold value for Cl concentration for such micas is about 0.04 wt% or 400 ppm, but F is a poor discriminant, being enriched up to about 4.0 wt% in potassic rocks from both mineralized and un-mineralized environments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allan JF, Carmichael ISE (1984) Lamprophyric lavas in the Colima graben, SW Mexico. Contrib Miner Petrol 88:203–216

    Article  Google Scholar 

  • Anderson AT (1974) Chlorine, sulfur and water in magmas and oceans. Bull Am Geol Society 85:1485–1492

    Article  Google Scholar 

  • Aoki K, Ishiwaka K, Kanisawa S (1981) Fluorine geochemistry of basaltic rocks from continental and oceanic regions and petrogenetic application. Contrib Miner Petrol 76:53–59

    Article  Google Scholar 

  • Audetat A, Pettke T (2003) The magmatic-hydrothermal evolution of two barren granites: a melt and fluid inclusion study of the Rito del Medio and Canada Pinabete plutons in southern New Mexico (USA). Geochim Cosmochim Acta 67:97–122

    Article  Google Scholar 

  • Audétat A, Li W (2017) The genesis of Climax-type porphyry Mo deposits: insights from fluid inclusions and melt inclusions. Ore Geol Rev 88:436–460

    Article  Google Scholar 

  • Ayati F, Yavuz F, Noghreyan M, Haroni HA, Yavuz A (2008) Chemical characteristics and composition of hydrothermal biotite from the Dalli porphyry copper prospect, Arak, central province of Iran. Mineral Petrol 94:107–122

    Article  Google Scholar 

  • Bailey DK, Hampton CM (1990) Volatiles in alkaline magmatism. Lithos 26:157–165

    Article  Google Scholar 

  • Baker DR, Alletti M (2012) Fluid saturation and volatile partitioning between melts and hydrous fluids in crustal magmatic systems: the contribution of experimental measurements and solubility models. Earth Sci Rev 114:298–324

    Article  Google Scholar 

  • Bao B, Webster JD, Zhang DH, Goldoff BA, Zhang RZ (2016) Compositions of biotite, amphibole, apatite and silicate melt inclusions from the Tongchang mine, Dexing porphy deposit, SE China: implications for the behaviour of halogens in mineralized porphyry systems. Ore Geol Rev 79:443–462

    Article  Google Scholar 

  • Barnes JD, Manning CE, Scambelluri M, Selverstone J (2018) The behavior of halogens during subduction-zone processes. In: Harlov D, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes. Springer Verlag Cham, Springer Geochemistry, pp 545–590

    Chapter  Google Scholar 

  • Bénard A, Koga KT, Shimizu N, Kendrick MA, Ionov DA, Nebel O, Arculus RJ (2017) Chlorine and fluorine partition coefficients and abundances in sub-arc mantle xenoliths (Kamchatka, Russia): implications for melt generation and volatile recycling processes in subduction zones. Geochim Cosmochim Acta 199:324–350

    Article  Google Scholar 

  • Bonham HF, Giles DL (1983) Epithermal gold/silver deposits: the geothermal connection. Geotherm Resour Counc Spec Rep 13:257–262

    Google Scholar 

  • Bonifacie M, Busigny V, Mével C (2008) Chlorine isotopic composition in seafloor serpentinites and high-pressure metaperidotites. Insights into oceanic serpentinization and subduction processes. Geochim Cosmochim Acta 72:126–139

    Article  Google Scholar 

  • Bonin B, Tatu M (2016) Cl-rich hydrous mafic mineral assemblages in the Highiș massif, Apuseni Mountains, Romania. Mineral Petrol 110:447–469

    Article  Google Scholar 

  • Botcharnikov RE, Behrens H, Holtz F, Koepke J, Sato H (2004) Sulfur and chlorine solubility in Mt. Unzen rhyodacitic melt at 850 ℃ and 200 MPa. Chem Geol 213:207–225

    Article  Google Scholar 

  • Botcharnikov RE, Linnen RL, Holtz F (2010) Solubility of Au in Cl- and S-bearing hydrous silicate melts. Geochim Cosmochim Acta 74:2396–2411

    Article  Google Scholar 

  • Boudreau AE, Mathez EA, McCallum IS (1986) Halogen geochemistry of the Stillwater and Bushveld complexes: evidence for transport of the platinum-group elements by Cl-rich fluids. J Petrol 27:967–986

    Article  Google Scholar 

  • Bowman JR, Parry WT, Kropp WP, Kruer SA (1987) Chemical and isotopic evolution of hydrothermal solutions at Bingham, Utah. Econ Geol 82:395–428

    Article  Google Scholar 

  • Brandt FE, Holm PM, Hansteen TH (2018) Volatile (Cl, F and S) and major element constraints on subduction-related mantle metasomatism along the alkaline basaltic backarc, Payenia. Contributions to Mineralogy and Petrology (in press), Argentina

    Google Scholar 

  • Brenan JM, Bennett NR, Zajacz Z (2016) Experimental results on fractionation of the highly siderophile elements (HSE) at variable pressures and temperatures during planetary and magmatic differentiation. Rev Mineral Geochem 81:1–87

    Article  Google Scholar 

  • Campbell IH, Compston DM, Richards JP, Johnson JP, Kent AJR (1998) Review of the application of isotopic studies to the genesis of Cu–Au mineralization at Olympic Dam and Au mineralization at Porgera, the Tennant Creek district and Yilgarn Craton. Aust J Earth Sci 45:201–218

    Article  Google Scholar 

  • Candela PA, Holland HD (1984) The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochim Cosmochim Acta 48:373–380

    Article  Google Scholar 

  • Candela PA (1989) Felsic magmas, volatiles, and metallogenesis. In: Whitney JA, Naldrett AJ (eds) Ore deposition associated with Magmas. Rev Econ Geol 4:223–233

    Google Scholar 

  • Candela PA (1997) A review of shallow, ore-related granites: textures, volatiles, and ore metals. J Petrol 38:1619–1633

    Article  Google Scholar 

  • Cao M, Li G, Qin K, Seitmuratova EY, Liu Y (2011) Major and trace element characteristics of apatites in granitoids from central Kazakhstan: implications for petrogenesis and mineralization. Resour Geol 62:63–83

    Article  Google Scholar 

  • Carmichael ISE, Ghiorso MS (1986) Oxidation-reduction relations in basic magma: a case for homogeneous equilibria. Earth Planet Sci Lett 78:200–210

    Article  Google Scholar 

  • Carten RB (1987) Evolution of immiscible Cl- and F-rich liquids from ore magmas, Henderson porphyry molybdenum deposit Colorado. Geol Soc Am Abstr 19:613

    Google Scholar 

  • Chambefort I, Dilles JH, Longo AA (2013) Amphibole geochemistry of the Yanacocha volcanics, Peru: evidence for diverse sources of magmatic volatiles related to gold ores. J Petrol 54:1017–1046

    Article  Google Scholar 

  • Chavrit D, Burgess R, Sumino H, Teagle DAH, Droop G, Shimizu A, Ballentine CJ (2016) The contribution of hydrothermally altered ocean crust to the mantle halogen and noble gas cycles. Geochim Cosmochim Acta 183:106–124

    Article  Google Scholar 

  • Chelle-Michou C, Rottier B, Caricchi L, Simpson G (2017) Tempo of magma degassing and the genesis of porphyry copper deposits. Sci Rep 7. https://doi.org/10.1038/srep40566

    Article  Google Scholar 

  • Chelle-Michou C, Chiaradia M (2018) Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits. Contrib Mineral Petrol (in press)

    Google Scholar 

  • Chen JL, Xu JF, Wang BD, Yang ZM, Ren JB, Yu HX, Liu H, Feng Y (2015) Geochemical differences between subduction- and collision-related copper-bearing porphyries and implications for metallogenesis. Ore Geol Rev 70:424–437

    Article  Google Scholar 

  • Chevychelov VY, Botcharnikov RE, Holtz F (2008) Partitioning of Cl and F between fluid and hydrous phonolitic melt of Mt. Vesuvius at 850–1000 & #xB0; C and 200 MPa. Chem Geol 256:172–184

    Article  Google Scholar 

  • Cline JS, Bodnar RJ (1991) Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? J Geophys Res 96:8113–8126

    Article  Google Scholar 

  • Cocco G, Fanfani L, Zanazzi PF (1972) Potassium. In: Wedepohl KH (ed) Handbook of geochemistry volume II-2. Springer, Berlin

    Google Scholar 

  • Cooke DR, Kitto PA, Harris AC, Chang Z, Wilkinson JJ, Wilkinson CC, Hollings P, Webster JD (2009) Magma fertility and mineralization. In: Williams PJ (ed) Smart science for exploration and mining. Proceedings of the tenth Biannial SGA Meeting, Townsville, 8–10

    Google Scholar 

  • Coulson IM, Dipple GM, Raudsepp M (2001) Evolution of HF and HCl activity in magmatic volatiles of the gold-mineralized Emerald Lake pluton, Yukon Territory, Canada. Mineral Depos 36:594–606

    Article  Google Scholar 

  • Denis CMM, Demouchy S, Alard O (2018) Heterogeneous hydrogen distribution in orthopyroxene from veined mantle peridotite (San Carlos, Arizona): impact of melt-rock interactions. Lithos 303:298–311

    Article  Google Scholar 

  • Dilles JH, Kent AJR, Wooden JL, Tosdal RM, Koleszar A, Lee RG, Farmer LP (2015) Zircon compositional evidence for sulphur-degassing from ore-forming arc magmas. Econ Geol 110:241–251

    Article  Google Scholar 

  • Dixon TH, Batiza R (1979) Petrology and chemistry of recent lavas in the N-Marianas: implications for the origin of island-arc basalts. Contrib Miner Petrol 70:167–181

    Article  Google Scholar 

  • Dixon JE, Clague DA, Wallace P, Poreda R (1997) Volatiles in alkali basalts from the North Arch volcanic field, Hawaii: extensive degassing of deep submarine-erupted alkali series lavas. J Petrol 38:911–939

    Article  Google Scholar 

  • Duan DF, Jiang SY (2018) Using apatite to discriminate synchronous ore-associated and barren granitic rocks: a case study from the Edong metallogenic district, South China. Lithos (in press)

    Google Scholar 

  • Edgar AD, Arima M (1985) Fluorine and chlorine contents of phlogopites crystallized from ultrapotassic rock compositions in high pressure experiments: implications for halogen reservoirs in source regions. Am Mineral 70:529–536

    Google Scholar 

  • Edgar AD, Charbonneau HE (1991) Fluorine-bearing phases in lamproites. Miner Petrol 44:125–149

    Article  Google Scholar 

  • Edgar AD, Lloyd FE, Vukadinovic D (1994) The role of fluorine in the evolution of ultrapotassic magmas. Miner Petrol 51:173–193

    Article  Google Scholar 

  • Foley SF (1992) Petrological characterization of the source components of potassic magmas: geochemical and experimental constraints. Lithos 28:187–204

    Article  Google Scholar 

  • Foley SF (1994) Geochemische und experimentelle Untersuchungen zur Genese der kalireichen Magmatite. Neues Jb Mineralogie Abh 167:1–55

    Google Scholar 

  • Franz L, Becker KP, Kramer W, Herzig PM (2002) Metasomatic mantle xenoliths from the Bismarck Microplate (Papua New Guinea)—Thermal evolution, geochemistry and extent of slab-induced metasomatism. J Petrol 43:315–343

    Article  Google Scholar 

  • Fuge R, Andrews MJ, Johnson CC (1986) Chlorine and iodine, potential pathfinder elements in exploration geochemistry. Appl Geochem 1:111–116

    Article  Google Scholar 

  • Gaillard N, Williams-Jones AE, Clark JR, Lypaczewski P, Salvi S, Perrouty S, Piette-Lauzière N, Guilmette C, Linnen RL (2018) Mica composition as a vector to gold mineralization: deciphering hydrothermal and metamorphic effects in the Malartic district, Quebec. Ore Geol Rev 95:789–820

    Article  Google Scholar 

  • Gammons CH, Williams-Jones AE (1997) Chemical mobility of gold in the porphyry-epithermal environment. Econ Geol 92:45–59

    Article  Google Scholar 

  • Gibert F, Pascal ML, Pichavant M (1998) Gold solubility and speciation in hydrothermal solutions: experimental study of the stability of hydrosulphide complex of gold (AuHS0) at 350 to 450 ℃ and 500 bars. Geochimica Cosmochimica Acta 62:2931–2947

    Article  Google Scholar 

  • Green TH, Adam J (2003) Experimentally-determined trace element characteristics of aqueous fluid from partially dehydrated mafic oceanic crust at 3.0 GPa, 650–700 ℃. Eur J Mineral 15:815–830

    Article  Google Scholar 

  • Grondahl C, Zajacz S (2017) Magmatic controls on the genesis of porphyry Cu–Mo–Au deposits: the Bingham Canyon example. Earth Planetary Sci Letters 480:53–65

    Article  Google Scholar 

  • Gunow AJ, Ludington S, Munoz JL (1980) Fluorine in micas from the Henderson molybdenite deposit, Colorado. Econ Geol 75:1127–1136

    Article  Google Scholar 

  • Hayashi KI, Ohmoto H (1991) Solubility of gold in NaCl- and H2S-bearing aqueous solutions at 250–350 ℃. Geochim Cosmochim Acta 55:2111–2126

    Article  Google Scholar 

  • Hayba DO, Bethke PM, Heald P, Foley NK (1985) Geologic, mineralogic and geochemical characteristics of volcanic-hosted precious-metal deposits. In: Berger BR, Bethke PM (eds) Geology and geochemistry of epithermal systems. Rev Econ Geol 2:129–167

    Google Scholar 

  • Heald P, Foley NK, Hayba DO (1987) Comparative anatomy of volcanic-hosted epithermal deposits: acid-sulfate and adularia-sericite types. Econ Geol 82:1–24

    Article  Google Scholar 

  • Heinrich CA (2005) The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study. Mineral Deposita 39:864–889

    Article  Google Scholar 

  • Hermann J, Spandler CJ (2008) Sediment melts at sub-arc depths: an experimental study. J Petrol 49:717–740

    Article  Google Scholar 

  • Hezarkhani A, Williams-Jones AE (1998) Controls of alteration and mineralization in the Sungun porphyry copper deposit, Iran; evidence from fluid inclusions and stable isotopes. Econ Geol 93:651–670

    Article  Google Scholar 

  • Holland HD (1972) Granites, solutions, and base-metals. Econ Geol 67:281–301

    Article  Google Scholar 

  • Iveson AA, Webster JD, Rowe MC, Neill OK (2017) Major element and halogen (F, Cl) mineral-melt-fluid partitioning in hydrous rhyodacitic melts at shallow crustal conditions. J Petrol 58:2465–2492

    Article  Google Scholar 

  • Izraeli ES, Harris JW, Navon O (2001) Brine inclusions in diamonds: a new upper mantle fluid. Earth Planet Sci Lett 187:323–332

    Article  Google Scholar 

  • Jenner FE, O´Neill HSC (2012) Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochem, Geophys, Geosystems 13. https://doi.org/10.1029/2011gc004009

    Article  Google Scholar 

  • Jensen EP (2003) Magmatic and hydrothermal evolution of the Cripple Creek gold deposit, Colorado, and comparisons with regional and global magmatic-hydrothermal systems associated with alkaline magmatism. Unpublished Ph.D. thesis, The University of Arizona, Tucson

    Google Scholar 

  • Jiang SY, Palmer MR, Xue CJ, Li YH (1994) Halogen-rich scapolite-biotite rocks from the Tongmugou Pb–Zn deposit, Qinling, northwestern China: implications for the ore-forming processes. Miner Mag 58:543–552

    Article  Google Scholar 

  • Jin C, Gao XY, Chen WT, Zhao TP (2018) Magmatic-hydrothermal evolution of the Donggou porphyry Mo deposit at the southern margin of the North China Craton: evidence from chemistry of biotite. Ore Geol Rev 92:84–96

    Article  Google Scholar 

  • John T, Scambelluri M, Frische M, Barnes JD, Bach W (2011) Dehydration of subducting serpentinite: implications for halogen mobility in subduction zones and the deep halogen cycle. Earth Planet Sci Lett 308:65–76

    Article  Google Scholar 

  • Kelley KD, Ludington S (2002) Cripple Creek and other alkaline-related gold deposits in the southern Rocky Mountains, USA: influence of regional tectonics. Mineral Depos 37:38–60

    Article  Google Scholar 

  • Keppler H (2017) Fluids and trace element transport in subduction zones. Am Miner 102:5–20

    Article  Google Scholar 

  • Kesler SE, Issigonis MJ, Brownlow AH, Damon PE, Moore WJ, Northcote KE, Preto VA (1975) Geochemistry of biotites from mineralized and barren intrusive systems. Econ Geol 70:559–567

    Article  Google Scholar 

  • Kilinc IA, Burnham CW (1972) Partitioning of chloride between a silicate melt and coexisting aqueous phase from 2 to 8 kilobars. Econ Geol 67:231–235

    Article  Google Scholar 

  • Kobayashi M, Sumino H, Nagao K, Ishimaru S, Arai S, Yoshikawa M, Kawamoto T, Kumagai Y, Kobayashi T, Burgess R, Ballentine CJ (2017) Slab-derived halogens and noble gases illuminate closed system processes controlling volatile element transport into the mantle wedge. Earth Planet Sci Lett 457:106–116

    Article  Google Scholar 

  • Kouzmanov K, Pokrovski GS (2012) Hydrothermal controls on metal distribution in porphyry Cu (-Mo-Au) systems. Econ Geol Special Publ 16:573–618

    Google Scholar 

  • Kravchuk IF, Keppler H (1994) Distribution of chloride between aqueous fluids and felsic melts at 2 kbar and 800 ℃. Eur J Mineral 6:913–923

    Article  Google Scholar 

  • Krneta S, Ciobanu CL, Cook NJ, Ehrig K, Kontonikas-Charos A (2016) Apatite at Olympic Dam, South Australia: a petrogenetic tool. Lithos 262:470–485

    Article  Google Scholar 

  • Kroll T, Müller D, Seifert T, Herzig PM, Schneider A (2002) Petrology and geochemistry of the shoshonite-hosted Skouries porphyry Cu–Au deposit, Chlalkidiki, Greece. Mineral Depos 37:137–144

    Article  Google Scholar 

  • Kullerud K (1995) Chlorine, titanium and barium-rich biotites: factors controlling biotite composition and the implications for garnet-biotite geothermometry. Contrib Miner Petrol 120:42–59

    Article  Google Scholar 

  • Large RR, Huston DL, McGoldrick PJ, Ruxton PA (1989) Gold distribution and genesis in Australian volcanogenic massive sulphide deposits and their significance for gold transport models. In: Keays RR, Ramsay WRH, Groves DI (eds) The geology of gold deposits: the perspective in 1988. Econ Geol Monogr 6:520–536

    Google Scholar 

  • Lee RG (2008) Genesis of the EI Salvador porphyry copper deposit, Chile and distribution of epithermal alteration at Lassen Peak, California. Unpupl. PhD Thesis, Oregon State University, Corvallis, USA

    Google Scholar 

  • Lesne P, Kohn SC, Blundy J, Witham F, Botcharnikov RE, Behrens H (2011) Experimental simulation of closed-system degassing in the system basalt-H2O–CO2–S–Cl. J Petrol 52:1737–1762

    Article  Google Scholar 

  • Li Y, Audetat A (2013) Gold solubility and partitioning between sulfide liquid, monosulfide solid solution and hydrous mantle melts: implications for the formation of Au-rich magmas and crust-mantle differentiation. Geochim Cosmochim Acta 118:247–262

    Article  Google Scholar 

  • Li H, Hermann J (2017) The effect of fluorine and chlorine on trace element partitioning between apatite and sediment melt at subduction zone conditions. Chem Geol 473:55–73

    Article  Google Scholar 

  • Li X, Zhang C, Behrens H, Holtz F (2017) Fluorine partitioning between titanite and silicate melt and its dependence on melt composition: experiments at 50–200 MPa and 875–925 ℃. Eur J Mineral 29:1–12

    Article  Google Scholar 

  • Li JX, Qin KZ, Li GM, Evans NJ, Zhao JX, Yue YH, Xie J (2018) Volatile variations in magmas related to porphyry Cu-Au deposits: insights from amphibole geochemistry, Duolong district, central Tibet. Ore Geol Rev 95:649–662

    Article  Google Scholar 

  • Liang Y, Hoshino K (2015) Thermodynamic calculations of AuxAg1-x—fluid equilibria and their applications for ore-forming conditions. Appl Geochem 52:109–117

    Article  Google Scholar 

  • Liu J, Li Y, Zhou ZH, OuYang HG (2017a) The Ordovician igneous rocks with high Sr/Y at the Tongshan porphyry copper deposit, satellite of the Duobaoshan deposit, and their metallogenic role. Ore Geol Rev 86:600–614

    Article  Google Scholar 

  • Liu XL, Li WC, Zhang N, Yang FC (2017b) Geochemistry and petrogenesis of Triassic mineralized porphyries in the Geza of the Sanjiang orogenic belt, southwestern China. Int Geol Rev 59:965–980

    Article  Google Scholar 

  • Lofersky PJ, Ayuso RA (1995) Petrography and mineral chemistry of the composite Deboullie pluton, northern Maine, USA: implications for the genesis of Cu–Mo mineralization. Chem Geol 123:89–105

    Article  Google Scholar 

  • Lowenstern JB (1994) Dissolved volatile concentrations in an ore-forming magma. Geology 22:893–896

    Article  Google Scholar 

  • Lyubetskaya T, Korenaga J (2007) Chemical composition of Earth’s primitive mantle and its variance: 1. Methods and results. J Geophys Res 112. http://dx.doi.org/10.1029/2005JB004223

  • Magenheim AJ, Spivack AJ, Michael PJ, Gieskes JM (1995) Chlorine stable isotope composition of the oceanic crust: implications for Earth’s distribution of chlorine. Earth Planet Sci Lett 131:427–432

    Article  Google Scholar 

  • Mair P, Tropper P, Harlov DE, Manning CE (2017) The solubility of apatite in H2O, KCl–H2O, NaCl–H2O at 800 ℃ and 1.0 GPa: implications for REE mobility in high-grade saline brines. Chem Geol 470:180–192

    Article  Google Scholar 

  • Mao M, Rukhlov AS, Rowins SM, Spence J, Coogan LA (2016) Apatite trace element compositions: a robust new tool for mineral exploration. Econ Geol 111:1187–1222

    Article  Google Scholar 

  • Mavrogenes JA, Scaillet B, Pichavant M, England RN (2006) The connection between high-K melts and Au deposits: evidence from natural and experimental systems. Geochim Cosmochim Acta 70:A404

    Article  Google Scholar 

  • Melluso L, de Gennaro R, Fedele L, Franciosi L, Morra V (2012) Evidence of crystallization in residual, Cl–F-rich, agpaitic, trachyphonolitic magmas and primitive Mg-rich basalt-trachyphonolite interaction in the lava domes of the Phlegrean Fields (Italy). Geol Mag 149:532–550

    Article  Google Scholar 

  • Metrich N, Rutherford MJ (1992) Experimental study of chlorine behavior in hydrous silicic melts. Geochim Cosmochim Acta 56:607–616

    Article  Google Scholar 

  • Müller D (1993) Shoshonites and potassic igneous rocks: indicators for tectonic setting and mineralization potential of modern and ancient terranes. Unpublished Ph.D. thesis, The University of Western Australia, Perth

    Google Scholar 

  • Müller D, Groves DI (1993) Direct and indirect associations between potassic igneous rocks, shoshonites and gold-copper deposits. Ore Geol Rev 8:383–406

    Article  Google Scholar 

  • Müller D, Morris BJ, Farrand MG (1993) Potassic alkaline lamprophyres with affinities to lamproites from the Karinya Syncline, South Australia. Lithos 30:123–137

    Article  Google Scholar 

  • Müller D, Heithersay PS, Groves DI (1994) The shoshonite porphyry Cu–Au association in the Goonumbla district, N.S.W Australia. Miner Petrol 51:299–321

    Article  Google Scholar 

  • Müller D, Franz L, Herzig PM, Hunt S (2001) Potassic igneous rocks from the vicinity of epithermal gold mineralization, Lihir Island, Papua New Guinea. Lithos 57:163–186

    Article  Google Scholar 

  • Müller D, Herzig PM, Scholten JC, Hunt S (2002) Ladolam gold deposit, Lihir Island, Papua New Guinea: gold mineralization hosted by alkaline rocks. Econ Geol Spec Publ 9:367–382

    Google Scholar 

  • Müller D, Franz L, Petersen S, Herzig PM, Hannington MD (2003) Comparison between magmatic activity and gold mineralization at Conical Seamount and Lihir Island, Papua New Guinea. Miner Petrol 79:259–283

    Article  Google Scholar 

  • Munoz JL (1984) F–OH and Cl–OH exchange in micas with applications to hydrothermal ore deposits. In: Bailey SW (ed) Micas. American mineralogical society. Michigan, Rev Mineral 13:469–493

    Google Scholar 

  • Munoz JL (2008) Calculation of HF and HCL fugacities from biotite compositions: revised equations. Goel Soc Am Abs Programs 24:A221

    Google Scholar 

  • Nadeau O, Stix J, Williams-Jones AE (2016) Links between arc volcanoes and porphyry-epithermal ore deposits. Geology 44:11–14

    Article  Google Scholar 

  • Naumov VB, Kovalenko VI, Dorofeeva VA (1998) Fluorine concentration in magmatic melts: evidence from inclusions in minerals. Geochem Int 36:117–127

    Google Scholar 

  • Pagé L, Hattori K, De Hoog JCM, Okay AI (2016) Halogen (F, Cl, Br, I) behaviour in subducting slabs: a study of lawsonite blueschists in western Turkey. Earth Planet Sci Lett 442:133–142

    Article  Google Scholar 

  • Parry WT, Ballantyne GH, Wilson JC (1978) Chemistry of biotites and apatites from a vesicular quartzlatite porphyry plug at Bingham, Utah. Econ Geol 73:1308–1314

    Article  Google Scholar 

  • Peach CL, Mathez EA, Keays RR, Reeves SJ (1994) Experimentally determined sulphide melt-silicate melt partition coefficients for iridium and palladium. Chem Geol 117:361–377

    Article  Google Scholar 

  • Philippot P, Selverstone J (1991) Trace-element-rich brines in eclogitic veins: implications for fluid composition and transport during subduction. Contrib Miner Petrol 106:417–430

    Article  Google Scholar 

  • Richards JP (1990a) Petrology and geochemistry of alkaline intrusive at the Porgera gold deposit, Papua New Guinea. J Geochem Explor 35:141–199

    Article  Google Scholar 

  • Richards JP (1990b) The Porgera gold deposit, Papua New Guinea: geology, geochemistry and geochronology. Unpublished Ph.D. thesis, The Australian National University, Canberra

    Google Scholar 

  • Richards JP (1995) Alkalic-type epithermal gold deposits—a review. In: Thompson JFH (ed) Magmas, fluids, and ore deposits, vol 23. Mineralogical Association of Canada, Toronto, Short Course Handbook, pp 367–400

    Google Scholar 

  • Richards JP (2009) Postsubduction porphyry Cu–Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere. Geology 37:247–250

    Article  Google Scholar 

  • Richards JP (2011) High Sr/Y arc magmas and porphyry Cu ± Mo ± Au deposits: just add water. Econ Geol 106:1075–1081

    Article  Google Scholar 

  • Richards JP, McCulloch MT, Chappell BW, Kerrich R (1991) Sources of metals in the Porgera gold deposit, Papua New Guinea: evidence from alteration, isotope, and noble metal geochemistry. Geochim Cosmochim Acta 55:565–580

    Article  Google Scholar 

  • Righter K, Dyar MD, Delaney JS, Vennemann TW, Hervig RL, King PL (2002) Correlations of octahedral cations with OH-, O2-, Cl-, and F- in biotite from volcanic rocks and xenoliths. Am Miner 87:142–153

    Article  Google Scholar 

  • Riker J, Humphreys MCS, Brooker RA, De Hoog JCM (2018) First measurements of OH-C exchange and temperature-dependent partitioning of OH and halogens in the system apatite-silicate melt. Am Miner 103:260–270

    Article  Google Scholar 

  • Roberge M, Bureau H, Bolfan-Casanova N, Frost DJ, Raepsaet C, Surble S, Khodja H, Auzende AL, Fiquet G (2015) Is the transition zone a deep reservoir for fluorine? Earth Planet Sci Lett 429:25–32

    Article  Google Scholar 

  • Rock NMS, Groves DI (1988) Do lamprophyres carry gold as well as diamonds? Nature 332:253–255

    Article  Google Scholar 

  • Rock NMS, Duller P, Haszeldine S, Groves DI (1987) Lamprophyres as potential gold exploration targets: some preliminary observations and speculations. In: Ho SE, Groves DI (eds) Recent advances in understanding Precambrian gold deposits, vol 11. Geology Department and University Extension, The University of Western Australia Publication, pp 271–286

    Google Scholar 

  • Roedder E (1984) Fluid inclusions. Mineral Soc Am, Rev Mineral 12:1–644

    Google Scholar 

  • Roegge JS, Logsdon MJ, Young HS, Barr HB, Borcsik M, Holland HD (1974) Halogens in apatites from the Providencia area, Mexico. Econ Geol 69:229–240

    Article  Google Scholar 

  • Runyon SE, Steele-MacInnis M, Seedorff E, Lecumberri-Sanchez P, Mazdab FK (2017) Coarse muscovite veins and alteration deep in the Yerington batholith, Nevada: insights into fluid exsolution in the roots of porphyry copper systems. Miner Deposita 52:463–470

    Article  Google Scholar 

  • Sarjoughian F, Kananian A, Ahmadian J, Murata M (2015) Chemical composition of biotite from the Kuh-e Dom pluton, central Iran: implications for granitoid magmatism and related Cu–Au mineralization. Arab J Geosci 8:1521–1533

    Article  Google Scholar 

  • Satsukawa T, Godard M, Demouchy S, Michibayashi K, Ildefonse B (2017) Chemical interactions in the subduction factory: new insights from an in situ trace element and hydrogen study of the Ichinomegata and Oki-Dogo mantle xenoliths (Japan). Geochim Cosmochim Acta 208:234–267

    Article  Google Scholar 

  • Selby D, Nesbitt BE (2000) Chemical composition of biotite from the Casino porphury Cu-Au-Mo mineralization, Yukon, Canada: evaluation of magmatic and hydrothermal fluid chemistry. Chem Geol 171:77–93

    Article  Google Scholar 

  • Shabani AAT, Lalonde A, Whalen JB (2003) Composition of biotite from granitic rocks of the Canadian Appalachian orogen: a potential tectonomagmatic indicator? Can Mineral 41:1381–1396

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  • Shinohara H (1994) Exsolution of immiscible vapour and liquid phases from a crystallizing silicate melt: implications for chlorine and metal transport. Geochim Cosmochim Acta 58:5215–5221

    Article  Google Scholar 

  • Shinohara H (2009) A missing link between volcanic degassing and experimental studies on chloride partitioning. Chem Geol 263:51–59

    Article  Google Scholar 

  • Shishkina TA, Portnyagin MV, Botcharnikov RE, Almeev RR, Simonyan AV, Garbe-Schönberg D, Schuth S, Oeser M, Holtz F (2018) Experimental calibration and implications of olivine-melt vanadium oxybarometry for hydrous basaltic arc magmas. Am Miner 103:369–383

    Article  Google Scholar 

  • Siahcheshm K, Calagari AA, Abedini A, Lentz DR (2012) Halogen signatures of biotites from the Maher-Abad porphyry copper deposit, Iran: characterization of volatiles in syn- to post-magmatic hydrothermal fluids. Int Geol Rev 54:1353–1368

    Article  Google Scholar 

  • Sillitoe RH (2002) Some metallogenic features of gold and copper deposits related to alkaline rocks and consequences for exploration. Min Depos 37:4–13

    Article  Google Scholar 

  • Sliwinski JT, Ellis BS, Dávila-Harris P, Wolff JA, Olin PH, Bachmann O (2017) The use of biotite trace element compositions for fingerprinting magma batches at Las Cañadas volcano Tenerife. Bull Volcanol 79:1. https://doi.org/10.1007/s00445-016-1088-2

    Article  Google Scholar 

  • Solomon M, Groves DI (1994) The geology and origin of Australia’s mineral deposits, vol 24. Clarendon Press, New York, Oxford Monographs in Geology and Geophysics, 951 pp

    Google Scholar 

  • Spear JA (1984) Micas in igneous rocks. In: Bailey SW (ed) Micas. American Mineralogical Society, Michigan. Rev Mineral 13:299–349

    Google Scholar 

  • Spooner ETC (1993) Magmatic sulphide/volatile interaction as a mechanism for producing chalcophile element-enriched, Archaean Au-quartz hydrothermal ore fluids. Ore Geol Rev 7:359–379

    Article  Google Scholar 

  • Stanton RL (1994) Ore elements in arc lavas, vol 29. Clarendon Press, New York, Oxford Mono Geol Geophys, 391 pp

    Google Scholar 

  • Stock MJ, Humphreys MCS, Smith VCS, Isaia R, Brooker RA, Pyle DM (2018) Tracking volatile behaviour in sub-volcanic plumbing systems using apatite. J Petrol (in press)

    Google Scholar 

  • Stollery G, Borcsik M, Holland HD (1971) Chlorine in intrusions: a possible prospecting tool. Econ Geol 66:361–367

    Article  Google Scholar 

  • Sullivan NA, Zajacz Z, Brenan JM (2018) The solubility of Pd and Au in hydrous intermediate silicate melts: the effect of oxygen fugacity and the addition of Cl and S. Geochimica et Cosmochimica Acta 231:15–29

    Article  Google Scholar 

  • Sun W, Arculus RJ, Kamenetsky VS, Binns RA (2004) Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature 431:975–978

    Article  Google Scholar 

  • Sun WD, Liang HY, Ling MX, Zhan MZ, Ding X, Zhang H, Yang XY, Li YL, Ireland TR, Wei QR, Fan WM (2013) The link between reduced porphyry copper deposits and oxidized magmas. Geochim Cosmochim Acta 103:263–275

    Article  Google Scholar 

  • Sun X, Lin H, Fu Y, Li D, Hollings P, Yang T, Liu Z (2017a) Trace element geochemistry of magnetite from the giant Beiya gold-polymetallic deposit in Yunnan Province, southwest China and its implications for the ore forming processes. Ore Geol Rev 91:477–490

    Article  Google Scholar 

  • Sun X, Zheng Y, Xu J, Huang L, Guo F, Gao S (2017b) Metallogenesis and ore controls of Cenozoic porphyry Mo deposits in the Gangdese belt of southern Tibet. Ore Geol Rev 81:996–1014

    Article  Google Scholar 

  • Sun Y, Liu J, Zeng Q, Wang J, Wang Y, Hu R, Zhou L, Wu G (2017c) Mo-mineralized porphyries are relatively hydrous and differentiated: insights from the Permian-Triassic granitic complex in the Baituyingzi Mo–Cu district, eastern Inner Mongolia, NE China. Miner Deposita 52:799–821

    Article  Google Scholar 

  • Tao R, Zhang L, Liu X, Bader T, Fei Y (2017) Phase relations and formation of K-bearing Al-10 Å phase in the MORB + H2O system: implications for H2O- and K-cycles in subduction zones. Am Miner 102:1922–1933

    Article  Google Scholar 

  • Tapster S, Condon DJ, Naden J, Noble SR, Petterson MG, Roberts NMW, Saunders AD, Smith DJ (2016) Rapid thermal rejuvenation of high-crystallinity magma linked to porphyry copper deposit formation; evidence from the Koloula porphyry prospect, Solomon Islands. Earth Planet Sci Lett 442:206–217

    Article  Google Scholar 

  • Tatsumi Y, Koyaguchi T (1989) An absarokite from a phlogopite lherzolite source. Contrib Miner Petrol 102:34–40

    Article  Google Scholar 

  • Taylor BE (2007) Epithermal gold deposits. In: Goodfellow WD (Ed) Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geol Assoc Can, Mineral Deposits Division, Special Publications 5:113–139

    Google Scholar 

  • Taylor WR, Rock NMS, Groves DI, Perring CS, Golding SD (1994) Geochemistry of Archaean shoshonitic lamprophyres from the Yilgarn Block, Western Australia: Au abundance and association with gold mineralization. Appl Geochem 9:197–222

    Article  Google Scholar 

  • Teiber H, Scharrer M, Marks MAW, Arzamastev AA, Wenzel T, Markl G (2015) Equilibrium partitioning and subsequent re-distribution of halogens among apatite-biotite-amphibole assemblages from mantle-derived plutonic rocks: complexities revealed. Lithos 223:221–237

    Article  Google Scholar 

  • Thompson TB, Trippel AD, Dwelley PC (1985) Mineralized veins and breccias of the Cripple Creek District, Colorado. Econ Geol 80:1669–1688

    Article  Google Scholar 

  • Till CB (2017) A review and update of mantle thermobarometry for primitive arc magmas. Am Miner 102:931–947

    Google Scholar 

  • Touret JLR (2001) Fluids in metamorphic rocks. Lithos 55:1–25

    Article  Google Scholar 

  • Ulrich T, Mavrogenes J (2008) An experimental study of the solubility of molybdenum in H2O and KCl–H2O solutions from 500 ℃ to 800 ℃, and 150 to 300 MPa. Geochim Cosmochim Acta 72:2316–2330

    Article  Google Scholar 

  • Urann BM, Le Roux V, Hammond K, Marschall HR, Lee CTA, Monteleone BD (2018) Fluorine and chlorine in mantle minerals and the halogen budget of the earth’s mantle. Contrib Miner Petrol (in press)

    Google Scholar 

  • Valente DL (2008) The geology, geochemistry and geochronology of the EI Abra mine, Chile, and the adjacent Pajonal–EI Abra suite of intrusions. Unpl. PhD Thesis, Australian National University, Canberra, Australia

    Google Scholar 

  • Van den Bleeken G, Koga KT (2015) Experimentally determined distribution of fluorine and chlorine upon hydrous slab melting, and implications for F-Cl cycling through subduction zones. Geochim Cosmochim Acta 171:353–373

    Article  Google Scholar 

  • Vigneresse JL (2009) Evaluation of the chemical reactivity of the fluid phase through hard-soft acid-base concepts in magmatic intrusions with applications to ore generation. Chem Geol 263:69–81

    Article  Google Scholar 

  • Vigneresse JL, Truche L, Chattaraj PK (2014) Metal (copper) segregation in magmas. Lithos 209:462–470

    Article  Google Scholar 

  • Vukadinovic D, Edgar AD (1993) Phase relations in the phlogopite-apatite system at 20 kbar—implications for the role of fluorine in mantle melting. Contrib Miner Petrol 114:247–254

    Article  Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geoth Res 140:217–240

    Article  Google Scholar 

  • Wang L, Marks MAW, Keller J, Markl G (2014) Halogen variations in alkaline rocks from the Upper Rhine Graben (SW Germany): insights into F, Cl and Br behavior during magmatic processes. Chem Geol 380:133–144

    Article  Google Scholar 

  • Webster JD (1992) Water solubility and chlorine partitioning in Cl-rich granitic systems: effects of melt composition at 2 kbar and 800 ℃. Geochim Cosmochim Acta 56:679–687

    Article  Google Scholar 

  • Webster JD (1997) Chloride solubility in felsic melts and the role of chloride in magmatic degassing. J Petrol 38:1793–1807

    Article  Google Scholar 

  • Webster JD (2004) The exsolution of magmatic hydrosaline chloride liquids. Chem Geol 210:33–48

    Article  Google Scholar 

  • Webster JD, Holloway JR (1988) Experimental constraints on the partitioning of Cl between topaz rhyolite melt and H2O and H2O + CO2 fluids: implications for granitic differentiation and ore deposition. Geochim Cosmochim Acta 52:2091–2105

    Article  Google Scholar 

  • Webster JD, Holloway JR (1990) Partitioning of F and Cl between magmatic hydrothermal fluids and highly evolved granitic magmas. In: Stein HJ, Hannah JL (eds) Ore-bearing granite systems; petrogenesis and mineralizing processes. Geol Soc Am Spec Pap 246:21–33

    Google Scholar 

  • Webster JD, Tappen CM, Mandeville CW (2009) Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid. II: felsic silicate systems at 200 MPa. Geochim Cosmochim Acta 73:559–581

    Article  Google Scholar 

  • Webster JD, Goldoff B, Sintoni MF, Shimizu N, Vivo BD (2014) C-O–H–Cl–S–F volatile solubilities, partitioning, and mixing in phonolithic-trachytic melts and aqueous-carbonic vapor ± saline liquid at 200 MPa. J Petrol 55:2217–2248

    Article  Google Scholar 

  • Webster JD, Baker DR, Aiuppa A (2018) Halogens in mafic and intermediate-silica content magmas. In: Harlov D, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes. Springer Verlag Cham, pp 307–430

    Google Scholar 

  • White WH, Bookstrom AA, Kamilli RJ, Ganster MW, Smith RP, Ranta DE, Steininger RC (1981) Character and origin of Climax-type molybdenum deposits. Econ Geol 75th Anniversary Volume, pp 270–316

    Google Scholar 

  • Williams-Jones AE, Heinrich CA (2005) Vapor transport of metals and the formation of magmatichydrothermal ore deposits. Econ Geol 100:1287–1312

    Article  Google Scholar 

  • Wu J, Koga KT (2013) Fluorine partitioning between hydrous minerals and aqueous fluid at 1GPa and 770–947 ℃: a new constraint on slab flux. Geochim Cosmochim Acta 119:77–92

    Article  Google Scholar 

  • Wyman D, Kerrich R (1989) Archaean lamprophyre dykes of the Superior Province, Canada: distribution, petrology and geochemical characteristics. J Geophys Res 94:4667–4696

    Article  Google Scholar 

  • Xie F, Tang J, Chen Y, Lang X (2018) Apatite and zircon geochemistry of Jurassic porphyries in the Xiongcun district, southern Gangdese porphyry copper belt: implications for petrogenesis and mineralization. Ore Geol Rev (in press)

    Article  Google Scholar 

  • Yang K, Bodnar RJ (1994) Magmatic-hydrothermal evolution in the “bottoms” of porphyry copper systems: evidence from silicate melt and aqueous fluid inclusions in granitoid intrusions in the Gyeongsang Basin, South Korea. Int Geo Rev 36:608–628

    Article  Google Scholar 

  • Yang XM, Lentz DR (2005) Chemical composition of rock-forming minerals in gold-related granitoid intrusions, southwestern New Brunswick, Canada: implications for crystallization conditions, volatile exsolution, and fluorine-chlorine activity. Contrib Miner Petrol 150:287–305

    Article  Google Scholar 

  • Zajacz Z, Seo JH, Candela PA, Piccoli PM, Heinrich CA, Guillong M (2010) Alkali metals control the release of gold from volatile-rich magmas. Earth Planet Sci Lett 297:50–56

    Article  Google Scholar 

  • Zajacz Z, Seo JH, Candela PA, Piccoli PM, Tossell JA (2011) The solubility of copper in high-temperature magmatic vapors: a quest for the significance of various chloride and sulfide complexes. Geochim Cosmochim Acta 75:2811–2827

    Article  Google Scholar 

  • Zajacz Z, Candela PA, Piccoli PM, Wälle M, Sanchez-Valle C (2012) Gold and copper in volatile saturated mafic to intermediate magmas: solubilities, partitioning, and implications for ore deposit formation. Geochim Cosmochim Acta 91:140–159

    Article  Google Scholar 

  • Zellmer GF, Edmonds M, Straub SM (2015) The role of volatiles in the genesis, evolution and eruption of arc magmas. Geol Soc Spec Publ 410:292 pp

    Google Scholar 

  • Zhang D, Audetat A (2017) Chemistry, mineralogy and crystallization conditions of porphyry Mo-forming magmas at Urad-Henderson and Silver Creek, Colorado, USA. J Petrol 58:277–296

    Article  Google Scholar 

  • Zhang M, Suddaby P, Thompson RN, Thirlwall MF, Menzies MA (1995) Potassic volcanic rocks in NE China: geochemical constraints on mantle source and magma genesis. J Petrol 36:1275–1303

    Article  Google Scholar 

  • Zhang W, Lentz DR, Thorne KG, McFarlane C (2016) Geochemical characteristics of biotite from felsic intrusive rocks around the Sisson Brook W–Mo–Cu deposit, west-central New Brunswick: an indicator of halogen and oxygen fugacity of magmatic systems. Ore Geol Rev 77:82–96

    Article  Google Scholar 

  • Zhong S, Feng C, Seltmann R, Dai Z (2018) Geochemical contrasts between late Triassic ore-bearing and barren intrusions in the Weibao Cu–Pb–Zn deposit, east Kunlun Mountains, NW China: constraints from accessory minerals (zircon and apatite). Miner Deposita (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Müller .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Müller, D., Groves, D.I. (2019). Halogen Contents of Mineralized Versus Unmineralized Potassic Igneous Rocks. In: Potassic Igneous Rocks and Associated Gold-Copper Mineralization. Mineral Resource Reviews. Springer, Cham. https://doi.org/10.1007/978-3-319-92979-8_9

Download citation

Publish with us

Policies and ethics