Skip to main content

Short-Range Order Above TC

  • Chapter
  • First Online:
Dynamic Spin-Fluctuation Theory of Metallic Magnetism

Abstract

Inelastic neutron scattering measurements give the most direct experimental information on spin fluctuations. In particular, the polarized neutron scattering analysis is one of the most important methods of investigating the spin-density correlations and short-range order (SRO).

A mathematician may say anything he pleases, but a physicist must be at least partially sane. (J.W. Gibbs)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a brief introduction to neutron scattering in itinerant electron magnets, see [18].

  2. 2.

    For selected temperatures, calculations of the spin-density correlator and its Fourier transform in static and dynamic approximations of spin fluctuation theory were carried out by Hasegawa [49] and Grebennikov [11, 50], respectively.

  3. 3.

    In the Heisenberg model, this reduces to C j = 〈S jS 0〉∕〈S 0S 0〉, where the jth spin S j is a vector of the modulus S 0. Therefore, in the paramagnetic region, C j is the mean cosine of the angle between the spins.

  4. 4.

    For discussion of the Ornstein-Zernike correlator in the Ising model see, e.g. [18].

  5. 5.

    Calculations in the renormalized Gaussian approximation with uniform fluctuations (RGA+UF) of the DSFT give close results [14, 16].

  6. 6.

    We consider only the spin contribution from the electron subsystem. The magnetic force arising from the orbital motion of electrons gives only a small cross-section for the neutron scattering and may be ignored [22]. As for the phonon contribution, it is not the main one in the ferromagnetic metals (see, e.g. [16, 19]). In detail the phonon mechanism is discussed in [54].

  7. 7.

    Experimental measurements up to the Brillouin zone boundary [29] confirm the results of [5, 27, 28].

  8. 8.

    A slightly larger experimental value of m L = 1. 3 μ B is obtained in [5, 27, 28] with the use of another measurement, and the value m L = 1. 55 μ B presented in [1] corresponds to the energy cutoff 200 meV.

  9. 9.

    Roughly speaking, the higher the peak of M 2(κ), the wider the correlator, and hence the larger is the SRO domain (for details, see [21]).

  10. 10.

    Correlation length of approximately 2a (a is the lattice constant) was reported by Tao et al. [59].

References

  1. T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism (Springer, Berlin, 1985)

    Book  Google Scholar 

  2. S.V. Maleyev, Physics-Uspekhi 45, 569 (2002)

    Article  ADS  Google Scholar 

  3. T. Chatterji (ed.), Neutron Scattering from Magnetic Materials (Elsevier, Amsterdam, 2006)

    Google Scholar 

  4. N. Plakida, High-Temperature Cuprate Superconductors (Springer, Berlin, 2010)

    Book  Google Scholar 

  5. P.J. Brown, H. Capellmann, J. Déportes, D. Givord, K.R.A. Ziebeck, J. Magn. Magn. Mater. 30, 243 (1982)

    Article  ADS  Google Scholar 

  6. J. Hubbard, in Physics of Transition Metals 1980 (Inst. Phys. Conf. Ser., No. 55), ed. by P. Rhodes (IOP, Bristol, 1981), pp. 669–687

    Google Scholar 

  7. J. Wicksted, G. Shirane, P. Böni, Phys. Rev. B 30, 3655 (1984)

    Article  ADS  Google Scholar 

  8. A.I. Lichtenstein, M.I. Katsnelson, G. Kotliar, Phys. Rev. Lett. 87, 067205 (2001)

    Article  ADS  Google Scholar 

  9. V.P. Antropov, Phys. Rev. B 72, 140406 (2005)

    Article  ADS  Google Scholar 

  10. Y. Kakehashi, M.A.R. Patoary, J. Phys. Soc. Jpn. 80, 034706 (2011)

    Article  ADS  Google Scholar 

  11. V.I. Grebennikov, Phys. Solid State 40, 79 (1998)

    Article  ADS  Google Scholar 

  12. B.I. Reser, V.I. Grebennikov, Phys. Met. Metallogr. 85, 20 (1998)

    Google Scholar 

  13. N.B. Melnikov, B.I. Reser, V.I. Grebennikov, J. Phys. Condens. Matter 23, 276003 (2011)

    Article  ADS  Google Scholar 

  14. N.B. Melnikov, B.I. Reser, J. Magn. Magn. Mater. 397, 347 (2016)

    Article  ADS  Google Scholar 

  15. N.B. Melnikov, B.I. Reser, G.V. Paradezhenko, J. Magn. Magn. Mater. 411, 133 (2016)

    Article  ADS  Google Scholar 

  16. N.B. Melnikov, G.V. Paradezhenko, B.I. Reser, Theor. Math. Phys. 191(1), 602 (2017)

    Article  Google Scholar 

  17. N.B. Melnikov, B.I. Reser, G.V. Paradezhenko, EPJ Web of Conferences 185, 11011 (2018)

    Article  Google Scholar 

  18. R.M. White, Quantum Theory of Magnetism, 3rd edn. (Springer, Berlin, 2007)

    Book  Google Scholar 

  19. G.V. Paradezhenko, N.B. Melnikov, B.I. Reser, Theor. Math. Phys. 195(1), 572 (2018)

    Article  Google Scholar 

  20. K. Ziebeck, P. Brown, J. Phys. F: Metal Phys. 10, 2015 (1980)

    Article  ADS  Google Scholar 

  21. G.V. Paradezhenko, N.B. Melnikov, B.I. Reser, Vychisl. Metody Programm. 17, 474 (2016) [in Russian]

    Google Scholar 

  22. R.J. Elliott, Proc. R. Soc. Lond. A 235, 289 (1956)

    Article  ADS  Google Scholar 

  23. G.L. Squires, Introduction to the Theory of Thermal Neutron Scattering, 2nd edn. (Dover, New York, 1996)

    Google Scholar 

  24. J. Schweizer, in Neutron Scattering from Magnetic Materials, chap. 4, ed. by T. Chatterji (Elsevier, Amsterdam, 2006), pp. 153–213

    Google Scholar 

  25. K. Blum, Density Matrix Theory and Applications (Plenum, New York, 1981)

    Book  Google Scholar 

  26. C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics (Wiley, New York, 1991)

    MATH  Google Scholar 

  27. P.J. Brown, H. Capellmann, J. Déportes, D. Givord, K.R.A. Ziebeck, J. Magn. Magn. Mater. 30, 335 (1983)

    Article  ADS  Google Scholar 

  28. P.J. Brown, H. Capellmann, J. Déportes, D. Givord, K.R.A. Ziebeck, J. Magn. Magn. Mater. 31–34, 295 (1983)

    Article  ADS  Google Scholar 

  29. G. Shirane, P. Böni, J.P. Wicksted, Phys. Rev. B 33, 1881 (1986)

    Article  ADS  Google Scholar 

  30. H.A. Mook, R.M. Nicklow, Phys. Rev. B 7, 336 (1973)

    Article  ADS  Google Scholar 

  31. H.A. Mook, J.W. Lynn, R.M. Nicklow, Phys. Rev. Lett. 30, 556 (1973)

    Article  ADS  Google Scholar 

  32. J.W. Lynn, Phys. Rev. B 11, 2624 (1975)

    Article  ADS  Google Scholar 

  33. H.A. Mook, J.W. Lynn, J. Appl. Phys. 57, 3006 (1985)

    Article  ADS  Google Scholar 

  34. H. Capellmann, J. Phys. F: Met. Phys. 4, 1466 (1974)

    Article  ADS  Google Scholar 

  35. H. Capellmann, Z. Phys. B 34, 29 (1979)

    Google Scholar 

  36. V. Korenman, J.L. Murray, R.E. Prange, Phys. Rev. B 16, 4032 (1977)

    Article  ADS  Google Scholar 

  37. V. Korenman, J.L. Murray, R.E. Prange, Phys. Rev. B 16, 4048 (1977)

    Article  ADS  Google Scholar 

  38. V. Korenman, J.L. Murray, R.E. Prange, Phys. Rev. B 16, 4058 (1977)

    Article  ADS  Google Scholar 

  39. D.M. Edwards, J. Magn. Magn. Mater. 15–18, 262 (1980)

    Article  ADS  Google Scholar 

  40. J. Hubbard, Phys. Rev. B 19, 2626 (1979)

    Article  ADS  Google Scholar 

  41. J. Hubbard, Phys. Rev. B 20, 4584 (1979)

    Article  ADS  Google Scholar 

  42. H. Hasegawa, J. Phys. Soc. Jpn. 46, 1504 (1979)

    Article  ADS  Google Scholar 

  43. H. Hasegawa, J. Phys. Soc. Jpn. 49, 178 (1980)

    Article  ADS  Google Scholar 

  44. H. Hasegawa, J. Phys. Soc. Jpn. 49, 963 (1980)

    Article  ADS  Google Scholar 

  45. V.I. Grebennikov, Y.I. Prokopjev, O.B. Sokolov, E.A. Turov, Phys. Met. Metallogr. 52, 1 (1981)

    Google Scholar 

  46. B.L. Gyorffy, A.J. Pindor, J. Staunton, G.M. Stocks, H. Winter, J. Phys. F: Met. Phys. 15, 1337 (1985)

    Article  ADS  Google Scholar 

  47. J. Staunton, B.L. Gyorffy, A.J. Pindor, G.M. Stocks, H. Winter, J. Phys. F: Met. Phys. 15, 1387 (1985)

    Article  ADS  Google Scholar 

  48. J. Staunton, B.L. Gyorffy, G. Stocks, J. Wadsworth, J. Phys. F: Met. Phys. 16, 1761 (1986)

    Article  ADS  Google Scholar 

  49. H. Hasegawa, J. Phys. F: Met. Phys. 13, 2655 (1983)

    Article  ADS  Google Scholar 

  50. V.I. Grebennikov, J. Magn. Magn. Mater. 84, 59 (1990)

    Article  ADS  Google Scholar 

  51. N.B. Melnikov, B.I. Reser, Phys. Procedia 75, 739 (2015)

    Article  ADS  Google Scholar 

  52. J.P. Sethna, Statistical Mechanics: Entropy, Order Parameters and Complexity (Oxford University Press, New York, 2006)

    MATH  Google Scholar 

  53. J. Crangle, G.M. Goodman, Proc. R. Soc. Lond. A 321, 477 (1971)

    Article  ADS  Google Scholar 

  54. D.J. Kim, New Perspectives in Magnetism of Metals (Kluwer/Plenum, New York, 1999)

    Book  Google Scholar 

  55. E.P. Wohlfarth, in Ferromagnetic Materials, vol. 1, ed. by E.P. Wohlfarth (North-Holland, Amsterdam, 1980), pp. 1–70

    Google Scholar 

  56. A. Ruban, S. Khmelevskyi, P. Mohn, B. Johansson, Phys. Rev. B 75, 054402 (2007)

    Article  ADS  Google Scholar 

  57. P.-W. Ma, S.L. Dudarev, Phys. Rev. B 86, 054416 (2012)

    Article  ADS  Google Scholar 

  58. D.M. Edwards, J. Magn. Magn. Mater. 36(3), 213 (1983)

    Article  ADS  Google Scholar 

  59. X. Tao, D.P. Landau, T.C. Schulthess, G.M. Stocks, Phys. Rev. Lett. 95, 087207 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Melnikov, N.B., Reser, B.I. (2018). Short-Range Order Above TC . In: Dynamic Spin-Fluctuation Theory of Metallic Magnetism. Springer, Cham. https://doi.org/10.1007/978-3-319-92974-3_15

Download citation

Publish with us

Policies and ethics