Skip to main content

Neutron Scattering in Metals

  • Chapter
  • First Online:
Book cover Dynamic Spin-Fluctuation Theory of Metallic Magnetism

Abstract

Neutron scattering is one of the main methods to study magnetic properties of metals and alloys. Firstly, neutron is an uncharged particle with spin and, secondly, slow neutrons have energies ( < 1 eV) of the same order as most of magnetic excitations. So, inelastic neutron scattering allows to analyse fluctuations of the spin-density.

On the pragmatic view the only thing that matters is that the theory is efficacious, that it “works” and that the necessary preliminaries and side issues do not cost too much in time and effort. (B.N. Brockhouse, Nobel Lecture, 1994)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the book [20] the calculation formula for W(κ) is obtained from the Lindemann melting formula. This result can be used to estimate the DWF using the melting temperature instead of the Debye temperature. However, the Lindemann formula can only give a qualitative estimate (see [21]).

  2. 2.

    Strictly speaking, calculating the DWF for Co is applicable only up to the melting temperature TT C exp ≈ 1. 27.

  3. 3.

    Indeed, substituting the atomic mass M = 55. 85 a.m.u. and Debye temperature Θ D = 464 K of Fe, and q B = 1. 71 Å−1 into formula (14.43), at κ = q B and T = T C exp, we obtain 2W ≈ 0. 037 and e−2W ≈ 0. 96.

References

  1. G.E. Bacon, Neutron Diffraction, 2nd edn. (Oxford University Press, Oxford, 1962)

    MATH  Google Scholar 

  2. V.F. Turchin, Slow Neutrons (Atomizdat, Moscow, 1963) [in Russian]. Engl. transl.: Israel Program for Scientific Translations, Jerusalem, 1965

    Google Scholar 

  3. I.I. Gurevich, L. Tarasov, Low-Energy Neutron Physics (Elsevier, Amsterdam, 1968)

    Google Scholar 

  4. Y.A. Izyumov, R.P. Ozerov, Magnetic Neutron Diffraction (Plenum, New York, 1970)

    Google Scholar 

  5. S.W. Lovesey, Theory of Neutron Scattering from Condensed Matter, vols. 1 and 2 (Clarendon, Oxford, 1986)

    Google Scholar 

  6. G.L. Squires, Introduction to the Theory of Thermal Neutron Scattering, 2nd edn. (Dover, New York, 1996)

    Google Scholar 

  7. L. Van Hove, Phys. Rev. 95, 249 (1954)

    Article  ADS  Google Scholar 

  8. L. Van Hove, Phys. Rev. 95, 1374 (1954)

    Article  ADS  Google Scholar 

  9. T. Izuyama, D.J. Kim, R. Kubo, J. Phys. Soc. Jpn. 18(7), 1025 (1963)

    Article  ADS  Google Scholar 

  10. N.B. Melnikov, G.V. Paradezhenko, B.I. Reser, Theor. Math. Phys. 191(1), 602 (2017)

    Article  Google Scholar 

  11. G.V. Paradezhenko, N.B. Melnikov, B.I. Reser, Theor. Math. Phys. 195(1), 572 (2018)

    Article  Google Scholar 

  12. R.M. White, Quantum Theory of Magnetism, 3rd edn. (Springer, Berlin, 2007)

    Book  Google Scholar 

  13. L. Schiff, Quantum Mechanics, 3rd edn. (McGraw-Hill, New York, 1968)

    Google Scholar 

  14. I.V. Savelyev, Fundamentals of Theoretical Physics, vol. 2. Quantum Mechanics (Mir Publ., Moscow, 1982)

    Google Scholar 

  15. C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics (Wiley, New York, 1991)

    MATH  Google Scholar 

  16. E. Mertzbacher, Quantum Mechanics, 3rd edn. (Wiley, New York, 1997)

    Google Scholar 

  17. N.D. Mermin, J. Math. Phys. 7, 1038 (1966)

    Article  ADS  Google Scholar 

  18. C.G. Windsor, Physica B+C. 91, 119 (1977)

    Google Scholar 

  19. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2005)

    MATH  Google Scholar 

  20. J. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1972)

    Book  Google Scholar 

  21. J. Quinn, K. Yi, Solid State Physics. Principles and Modern Applications (Springer, Berlin, 2009)

    Google Scholar 

  22. A.A. Maradudin, E.W. Montroll, G.H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation (Academic, New York, 1963)

    Google Scholar 

  23. Phonon States of Elements. Electron States and Fermi Surfaces of Alloys. Landolt-Börnstein New Series, vol. III/13a (Springer, Berlin, 1981)

    Google Scholar 

  24. J. Crangle, G.M. Goodman, Proc. R. Soc. Lond. A 321, 477 (1971)

    Article  ADS  Google Scholar 

  25. W.B. Pearson, Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon, New York, 1958)

    Google Scholar 

  26. P.J. Brown, H. Capellmann, J. Déportes, D. Givord, K.R.A. Ziebeck, J. Magn. Magn. Mater. 30, 243 (1982)

    Article  ADS  Google Scholar 

  27. P.J. Brown, H. Capellmann, J. Deportes, D. Givord, S.M. Johnson, K.R.A. Ziebeck, J. Phys. (Paris) 47, 491 (1986)

    Article  Google Scholar 

  28. P.J. Brown, H. Capellmann, J. Déportes, D. Givord, K.R.A. Ziebeck, J. Magn. Magn. Mater. 31–34, 295 (1983)

    Article  ADS  Google Scholar 

  29. D.J. Kim, New Perspectives in Magnetism of Metals (Kluwer/Plenum, New York, 1999)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Melnikov, N.B., Reser, B.I. (2018). Neutron Scattering in Metals. In: Dynamic Spin-Fluctuation Theory of Metallic Magnetism. Springer, Cham. https://doi.org/10.1007/978-3-319-92974-3_14

Download citation

Publish with us

Policies and ethics