Skip to main content

Coupling Large-Scale Omics Data for Deciphering Systems Complexity

  • Chapter
  • First Online:
Systems Biology

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Recent development in high-throughput experiments has provided great amount of data that is being used in translational personalized medicine. Data available in public databases is increasing exponentially as a result of the progress in omics technologies including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. Advancements in computing power and machine intelligence are affecting large-scale data analysis and integration. Two types of data integration are often considered: horizontal and vertical meta-analysis. The former integrates multiple studies of the same type, while the latter integrates data at different biological levels. This integrative approach provides a better understanding of systems complexity as a result of the global view that it offers from a biological point of view. This chapter describes the different types of omics analysis and discusses the methods of integrating multi-omics data using a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • 1000 Genomes Project Consortium, Auton A, Brooks LD et al (2015) A global reference for human genetic variation. Nature 526:68–74

    Google Scholar 

  • Abaffy T, Möller MG, Riemer DD et al (2013) Comparative analysis of volatile metabolomics signals from melanoma and benign skin: a pilot study. Metabolomics 9:998–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abou-Abbass H, Abou-El-Hassan H, Bahmad H et al (2016) Glycosylation and other PTMs alterations in neurodegenerative diseases: current status and future role in neurotrauma. Electrophoresis 37:1549–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams MD, Kelley JM, Gocayne JD et al (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252:1651–1656

    Article  CAS  PubMed  Google Scholar 

  • Alberts B (1998) The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92:291–294

    Article  CAS  PubMed  Google Scholar 

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51:786–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson S (1981) Shotgun DNA sequencing using cloned DNase I-generated fragments. Nucleic Acids Res 9:3015–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnes L, Akerman I, Balderes DA et al (2016) betalinc1 encodes a long noncoding RNA that regulates islet beta-cell formation and function. Genes Dev 30:502–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assfalg M, Bortoletti E, D’Onofrio M et al (2012) An exploratory 1H-nuclear magnetic resonance metabolomics study reveals altered urine spectral profiles in infants with atopic dermatitis. Br J Dermatol 166:1123–1125

    Article  CAS  PubMed  Google Scholar 

  • Atlas SA (2007) The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J Manag Care Pharm JMCP 13:9–20

    PubMed  Google Scholar 

  • Balog J, Sasi-Szabo L, Kinross J et al (2013) Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci Transl Med 5:194ra93–194ra93

    Article  CAS  PubMed  Google Scholar 

  • Barrett T, Wilhite SE, Ledoux P et al (2013) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41:D991–D995

    Article  CAS  PubMed  Google Scholar 

  • Bird A, Taggart M, Frommer M et al (1985) A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell 40:91–99

    Article  CAS  PubMed  Google Scholar 

  • Buermans HPJ, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842:1932–1941

    Article  CAS  PubMed  Google Scholar 

  • Byron SA, Van Keuren-Jensen KR, Engelthaler DM et al (2016) Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat Rev Genet 17:257–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantor RM, Lange K, Sinsheimer JS (2010) Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet 86:6–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carichon M, Pallet N, Schmitt C et al (2014) Urinary metabolic fingerprint of acute intermittent porphyria analyzed by 1H NMR spectroscopy. Anal Chem 86:2166–2174

    Article  CAS  PubMed  Google Scholar 

  • Carithers LJ, Moore HM (2015) The Genotype-Tissue Expression (GTEx) Project. Biopreserv Biobank 13:307–308

    Article  PubMed  PubMed Central  Google Scholar 

  • Caskey CT, Gonzalez-Garay ML, Pereira S, McGuire AL (2014) Adult genetic risk screening. Annu Rev Med 65:1–17

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Mias GI, Li-Pook-Than J et al (2012) Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148:1293–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Civelek M, Lusis AJ (2013) Systems genetics approaches to understand complex traits. Nat Rev Genet 15:34–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark SJ, Lee HJ, Smallwood SA et al (2016) Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol 17:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Consortium IH 3 (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467:52–58

    Article  CAS  Google Scholar 

  • Consortium IHGS (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  • Crutchfield CA, Thomas SN, Sokoll LJ, Chan DW (2016) Advances in mass spectrometry-based clinical biomarker discovery. Clin Proteomics 13:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das MK, Arya R, Debnath S et al (2016) Global urine metabolomics in patients treated with first-line tuberculosis drugs and identification of a novel metabolite of ethambutol. Antimicrob Agents Chemother 60:2257–2264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DePristo MA, Banks E, Poplin R et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirks RAM, Stunnenberg HG, Marks H (2016) Genome-wide epigenomic profiling for biomarker discovery. Clin Epigenetics 8:122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    Article  CAS  PubMed  Google Scholar 

  • ENCODE Project Consortium {fname} (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  CAS  Google Scholar 

  • Farley AR, Link AJ (2009) Identification and quantification of protein posttranslational modifications. Methods Enzymol 463:725–763

    Article  CAS  PubMed  Google Scholar 

  • Farrah T, Deutsch EW, Omenn GS et al (2014) State of the human proteome in 2013 as viewed through peptideatlas: comparing the kidney, urine, and plasma proteomes for the biology- and disease-driven human proteome project. J Proteome Res 13:60–75

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O (2002) Metabolomics—the link between genotyopes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  PubMed  Google Scholar 

  • Friedrich N (2012) Metabolomics in diabetes research. J Endocrinol 215:29–42

    Article  CAS  PubMed  Google Scholar 

  • García-Cañaveras JC, Jiménez N, Gómez-Lechón MJ et al (2015) LC-MS untargeted metabolomic analysis of drug-induced hepatotoxicity in HepG2 cells. Electrophoresis 36:2294–2302

    Article  CAS  PubMed  Google Scholar 

  • GTEx Consortium TGte (2013) The Genotype-Tissue Expression (GTEx) project. Nat Genet 45:580–585

    Article  CAS  Google Scholar 

  • Guo L, Milburn MV, Ryals JA et al (2015) Plasma metabolomic profiles enhance precision medicine for volunteers of normal health. Proc Natl Acad Sci USA 112:E4901–E4910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta RA, Shah N, Wang KC et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heller MJ (2002) DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 4:129–153

    Article  CAS  PubMed  Google Scholar 

  • Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226–232

    Article  CAS  PubMed  Google Scholar 

  • Hotchkiss RD (1948) The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem 175:315–332

    PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Article  CAS  Google Scholar 

  • Ishii N, Ozaki K, Sato H et al (2006) Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet 51:1087–1099

    Article  CAS  PubMed  Google Scholar 

  • Jung J, Kim SH, Lee HS et al (2013) Serum metabolomics reveals pathways and biomarkers associated with asthma pathogenesis. Clin Exp Allergy 43:425–433

    Article  CAS  PubMed  Google Scholar 

  • Khare SP, Habib F, Sharma R et al (2012) HIstome—a relational knowledgebase of human histone proteins and histone modifying enzymes. Nucleic Acids Res 40:D337–D342

    Article  CAS  PubMed  Google Scholar 

  • Khurana E, Fu Y, Chakravarty D et al (2016) Role of non-coding sequence variants in cancer. Nat Rev Genet 17:93–108

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Aronov P, Zakharkin SO et al (2009) Urine metabolomics analysis for kidney cancer detection and biomarker discovery. Mol Cell Proteomics MCP 8:558–570

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Jeon J, Mejia S et al (2016) Targeted proteomics identifies liquid-biopsy signatures for extracapsular prostate cancer. Nat Commun 7:11906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein RJ, Zeiss C, Chew EY et al (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koussounadis A, Langdon SP, Um IH et al (2015) Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Sci Rep 5:10775

    Article  PubMed  PubMed Central  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Kulis M, Esteller M (2010) DNA methylation and cancer. Adv Genet 70:27–56

    PubMed  Google Scholar 

  • Lehmann S, Brede C, Lescuyer P et al (2017) Clinical mass spectrometry proteomics (cMSP) for medical laboratory: what does the future hold? Clin Chim Acta 467:51–58

    Article  CAS  PubMed  Google Scholar 

  • Li S, Todor A, Luo R (2016) Blood transcriptomics and metabolomics for personalized medicine. Comput Struct Biotechnol J 14:1–7

    Article  CAS  PubMed  Google Scholar 

  • Licata L, Briganti L, Peluso D et al (2012) MINT, the molecular interaction database: 2012 Update. Nucleic Acids Res 40:D857–D861

    Article  CAS  PubMed  Google Scholar 

  • Lindskog C (2015) The potential clinical impact of the tissue-based map of the human proteome. Expert Rev Proteomics 12:213–215

    Article  CAS  PubMed  Google Scholar 

  • Lister R, Pelizzola M, Kida YS et al (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471:68–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier T, Güell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583:3966–3973

    Article  CAS  PubMed  Google Scholar 

  • Manolio TA, Collins FS (2009) The HapMap and genome-wide association studies in diagnosis and therapy. Annu Rev Med 60:443–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maraganore DM, de Andrade M, Lesnick TG et al (2005) High-resolution whole-genome association study of Parkinson disease. Am J Hum Genet 77:685–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mun J-H, Lee H, Yoon D et al (2016) Discrimination of basal cell carcinoma from normal skin tissue using high-resolution magic angle spinning 1H NMR spectroscopy. PLoS One 11:e0150328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nehme A, Zibara K (2017a) Cellular distribution and interaction between extended renin-angiotensin-aldosterone system pathways in atheroma. Atherosclerosis 263:334–342

    Article  CAS  PubMed  Google Scholar 

  • Nehme A, Zibara K (2017b) Efficiency and specificity of RAAS inhibitors in cardiovascular diseases: how to achieve better end-organ protection? Hypertens Res 40:903–909

    Article  CAS  PubMed  Google Scholar 

  • Nehme A, Cerutti C, Dhaouadi N et al (2015) Atlas of tissue renin-angiotensin-aldosterone system in human: a transcriptomic meta-analysis. Sci Rep 5:10035

    Article  PubMed  PubMed Central  Google Scholar 

  • Nehme A, Cerutti C, Zibara K (2016a) Transcriptomic analysis reveals novel transcription factors associated with renin–angiotensin–aldosterone system in human atheroma. Hypertension HYPERTENSIONAHA.116.08070

    Google Scholar 

  • Nehme A, Marcelo P, Nasser R et al (2016b) The kinetics of angiotensin-I metabolism in human carotid atheroma: an emerging role for angiotensin (1-7). Vascul Pharmacol 85:50–56

    Article  CAS  PubMed  Google Scholar 

  • Ng SB, Turner EH, Robertson PD et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orchard S, Ammari M, Aranda B et al (2014) The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 42:D358–D363

    Article  CAS  PubMed  Google Scholar 

  • Palmer ND, Stevens RD, Antinozzi PA et al (2015) Metabolomic profile associated with insulin resistance and conversion to diabetes in the Insulin Resistance Atherosclerosis Study. J Clin Endocrinol Metab 100:E463–E468

    Article  CAS  PubMed  Google Scholar 

  • Parkinson H, Kapushesky M, Shojatalab M et al (2007) ArrayExpress—a public database of microarray experiments and gene expression profiles. Nucleic Acids Res 35:D747–D750

    Article  CAS  PubMed  Google Scholar 

  • Polak P, Karlić R, Koren A et al (2015) Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518:360–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin W, Kozlowski P, Taillon BE et al (2010) Ultra deep sequencing detects a low rate of mosaic mutations in tuberous sclerosis complex. Hum Genet 127:573–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes DR, Yu J, Shanker K et al (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6, 6(1)

    Google Scholar 

  • Rhodes DR, Kalyana-Sundaram S, Mahavisno V et al (2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9:166–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie MD, Holzinger ER, Li R et al (2015) Methods of integrating data to uncover genotype–phenotype interactions. Nat Rev Genet 16:85–97

    Article  CAS  PubMed  Google Scholar 

  • Roy B, Haupt LM, Griffiths LR (2013) Review: alternative splicing (AS) of genes as an approach for generating protein complexity. Curr Genomics 14:182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94:441–448

    Article  CAS  PubMed  Google Scholar 

  • Schaefer C, Meier A, Rost B, Bromberg Y (2012) Snpdbe: constructing an nsSnp functional impacts database. Bioinformatics 28:601–602

    Article  CAS  PubMed  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  CAS  PubMed  Google Scholar 

  • Schmitz SU, Grote P, Herrmann BG (2016) Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci 73:2491–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoen C, Kischkies L, Elias J, Ampattu BJ (2014) Metabolism and virulence in Neisseria meningitidis. Front Cell Infect Microbiol 4:114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabman RS, Jabado OJ, Mire CE et al (2014) Deep sequencing identifies noncanonical editing of Ebola and Marburg virus RNAs in infected cells. mBio 5:e02011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Smith LM, Kelleher NL, Linial M et al (2013) Proteoform: a single term describing protein complexity. Nat Methods 10:186–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadler ZK, Thom P, Robson ME et al (2010) Genome-wide association studies of cancer. J Clin Oncol Off J Am Soc Clin Oncol 28:4255–4267

    Article  CAS  Google Scholar 

  • Tessarz P, Kouzarides T (2014) Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol 15:703–708

    Article  CAS  PubMed  Google Scholar 

  • Tomescu OA, Mattanovich D, Thallinger GG (2014) Integrative omics analysis. A study based on Plasmodium falciparum mRNA and protein data. BMC Syst Biol 8:S4

    Article  PubMed  PubMed Central  Google Scholar 

  • Trushina E, Mielke MM (2014) Recent advances in the application of metabolomics to Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 1842:1232–1239

    Article  CAS  Google Scholar 

  • Uhlén M, Fagerberg L, Hallström BM et al (2015) Proteomics. Tissue-based map of the human proteome. Science 347:1260419

    Article  CAS  PubMed  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    Article  CAS  PubMed  Google Scholar 

  • Verdin E, Ott M (2014) 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol 16:258–264

    Article  CAS  PubMed  Google Scholar 

  • Vizcaíno JA, Deutsch EW, Wang R et al (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32:223–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waddington CH (1942) The epigenotype. Endeavour 1:18–20. https://doi.org/10.1093/ije/dyr184

    Article  Google Scholar 

  • Weis JH, Tan SS, Martin BK, Wittwer CT (1992) Detection of rare mRNAs via quantitative RT-PCR. Trends Genet 8:263–264. https://doi.org/10.1016/0168-9525(92)90242-V

    Article  PubMed  CAS  Google Scholar 

  • Welter D, MacArthur J, Morales J et al (2014) The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42:D1001–D1006

    Article  CAS  PubMed  Google Scholar 

  • Worrall JA, Kolczak U, Canters GW, Ubbink M (2001) Interaction of yeast iso-1-cytochrome c with cytochrome c peroxidase investigated by [15N, 1H] heteronuclear NMR spectroscopy. Biochemistry (Mosc) 40:7069–7076

    Article  CAS  Google Scholar 

  • Wu JR, Zeng R (2012) Molecular basis for population variation: from SNPs to SAPs. FEBS Letters.:2841–2845

    Google Scholar 

  • Xenarios I (2002) DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30:303–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem Zibara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nehme, A., Awada, Z., Kobeissy, F., Mazurier, F., Zibara, K. (2018). Coupling Large-Scale Omics Data for Deciphering Systems Complexity. In: Rajewsky, N., Jurga, S., Barciszewski, J. (eds) Systems Biology. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-92967-5_8

Download citation

Publish with us

Policies and ethics