Skip to main content

Systems Biology of Bacterial Immune Systems: Regulation of Restriction-Modification and CRISPR-Cas Systems

  • Chapter
  • First Online:
Book cover Systems Biology

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Restriction-modification (R-M) and CRISPR-Cas are bacterial immune systems which defend their prokaryotic hosts from invasive DNA. Understanding how these systems are regulated is necessary for both biotechnology applications, and for understanding how they modulate horizontal gene transfer (including acquisition of virulence factors). We here review results on modeling these systems which point to common general principles underlying their architecture and dynamical response, with particular emphasis on modeling methods. We show that the modeling predictions are in a good agreement with both in vitro measurements of promoter transcription activity and the first in vivo measurements of gene expression dynamics in R-M systems. Modeling induction of CRISPR-Cas systems is challenging, as signaling which leads to their activation is currently unknown. However, based on similarities between transcription regulation in CRISPR-Cas and some R-M systems, we argue that transcription regulation of much simpler (and better studied) R-M systems can be used as a proxy for CRISPR-Cas transcription regulation, allowing to in silico assess CRISPR-Cas dynamical properties. Based on the obtained results, we propose that mechanistically otherwise different bacterial immune systems, presumably due to a common function, share the same unifying principles governing their expression dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bogdanova E, Djordjevic M, Papapanagiotou I et al (2008) Transcription regulation of the type II restriction-modification system AhdI. Nucleic Acids Res 36:1429–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdanova E, Zakharova M, Streeter S et al (2009) Transcription regulation of restriction-modification system Esp1396I. Nucleic Acids Res 37:3354–3366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C-C, Fang M, Majumder A et al (2001) A 72-base pair AT-rich DNA sequence element functions as a bacterial gene silencer. J Biol Chem 276:9478–9485

    Article  CAS  PubMed  Google Scholar 

  • Djordjevic M, Djordjevic M, Severinov K (2012) CRISPR transcript processing: a mechanism for generating a large number of small interfering RNAs. Biol Direct 7:24–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dresch JM, Richards M, Ay A (2013) A primer on thermodynamic-based models for deciphering transcriptional regulatory logic. BBA-Gene Regul Mech 1829:946–953

    CAS  Google Scholar 

  • Ershova A, Rusinov I, Spirin S et al (2015) Role of restriction-modification systems in prokaryotic evolution and ecology. Biochemistry-Moscow 80:1373–1386

    Article  CAS  PubMed  Google Scholar 

  • Goldberg GW, Marraffini LA (2015) Resistance and tolerance to foreign elements by prokaryotic immune systems – curating the genome. Nat Rev Immunol 15:717–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hille F, Charpentier E (2016) CRISPR-Cas: biology, mechanisms and relevance. Philos T Roy Soc B 371:20150496

    Article  CAS  Google Scholar 

  • Künne T, Kieper SN, Bannenberg JW et al (2016) Cas3-derived target DNA degradation fragments fuel primed CRISPR adaptation. Mol Cell 63:852–864

    Article  CAS  PubMed  Google Scholar 

  • Le Novère N (2015) Quantitative and logic modelling of molecular and gene networks. Nat Rev Genet 16:146–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGeehan J, Papapanagiotou I, Streeter S et al (2006) Cooperative binding of the C.AhdI controller protein to the C/R promoter and its role in endonuclease gene expression. J Mol Biol 358:523–531

    Article  CAS  PubMed  Google Scholar 

  • Medina-Aparicio L, Rebollar-Flores J, Gallego-Hernández A et al (2011) The CRISPR/Cas immune system is an operon regulated by LeuO, H-NS, and leucine-responsive regulatory protein in Salmonella enterica serovar Typhi. J Bacteriol 193:2396–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morozova N, Sabantsev A, Bogdanova E et al (2016) Temporal dynamics of methyltransferase and restriction endonuclease accumulation in individual cells after introducing a restriction-modification system. Nucleic Acids Res 44:790–800

    Article  CAS  PubMed  Google Scholar 

  • Mruk I, Blumenthal RM (2008) Real-time kinetics of restriction–modification gene expression after entry into a new host cell. Nucleic Acids Res 36:2581–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musharova O, Klimuk E, Datsenko KA et al (2017) Spacer-length DNA intermediates are associated with Cas1 in cells undergoing primed CRISPR adaptation. Nucleic Acids Res 45:3297–3307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagornykh M, Bogdanova E, Protsenko A et al (2008) Regulation of gene expression in a type II restriction-modification system. Russ J Genet 44:523–532

    Article  CAS  Google Scholar 

  • Phillips R, Kondev J, Theriot J et al (2012) Physical biology of the cell. Garland Science, New York

    Book  Google Scholar 

  • Pougach K, Semenova E, Bogdanova E et al (2010) Transcription, processing and function of CRISPR cassettes in Escherichia coli. Mol Microbiol 77:1367–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pul Ü, Wurm R, Arslan Z et al (2010) Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS. Mol Microbiol 75:1495–1512

    Article  CAS  PubMed  Google Scholar 

  • Ratner HK, Sampson TR, Weiss DS (2015) I can see CRISPR now, even when phage are gone: a view on alternative CRISPR-Cas functions from the prokaryotic envelope. Curr Opin Infect Dis 28:267–274

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodic A, Blagojevic B, Djordjevic M et al (2017a) Features of CRISPR-Cas regulation key to highly efficient and temporally-specific crRNA production. Front Microbiol 8:2139

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodic A, Blagojevic B, Zdobnov E et al (2017b) Understanding key features of bacterial restriction-modification systems through quantitative modeling. BMC Syst Biol 11:377–391

    Article  CAS  PubMed  Google Scholar 

  • Semenova E, Minakhin L, Bogdanova E et al (2005) Transcription regulation of the EcoRV restriction–modification system. Nucleic Acids Res 33:6942–6951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shea MA, Ackers GK (1985) The OR control system of bacteriophage lambda: a physical-chemical model for gene regulation. J Mol Biol 181:211–230

    Article  CAS  PubMed  Google Scholar 

  • Sneppen K, Zocchi G (2005) Physics in molecular biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sternberg SH, Richter H, Charpentier E et al (2016) Adaptation in CRISPR-Cas systems. Mol Cell 61:797–808

    Article  CAS  PubMed  Google Scholar 

  • Stowe K (2007) An introduction to thermodynamics and statistical mechanics. Cambridge University Press, New York

    Book  Google Scholar 

  • Stratmann T, Pul Ü, Wurm R et al (2012) RcsB-BglJ activates the Escherichia coli leuO gene, encoding an H-NS antagonist and pleiotropic regulator of virulence determinants. Mol Microbiol 83:1109–1123

    Article  CAS  PubMed  Google Scholar 

  • Westra ER, Pul Ü, Heidrich N et al (2010) H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Mol Microbiol 77:1380–1393

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Djordjevic .

Editor information

Editors and Affiliations

Appendix

Appendix

Derivation of the Boltzmann Distribution

Consider a system (s) in contact with a thermal reservoir (r), which together constitute an isolated system with fixed total energy E = E (s) + E (r). According to the second law of thermodynamics, such an isolated system evolves toward that partition of energy between a system and a reservoir, which can be established through a largest number of a whole system microstates (Phillips et al. 2012). Therefore, the probability that a system has energy \( {E}_i^{\left(\mathrm{s}\right)} \) is proportional to the number of corresponding microstates of the overall system, \( \Omega \left(E,{E}_i^{\left(\mathrm{s}\right)}\right)={\Omega}^{\left(\mathrm{s}\right)}\left({E}_i^{\left(\mathrm{s}\right)}\times {\Omega}^{\left(\mathrm{r}\right)}\left(E-{E}_i^{\left(\mathrm{s}\right)}\right)\right) \). System degeneracy is directly related to its entropy S = k B ln(Ω), where k B is the Boltzmann constant, so the probability that a system has energy \( {E}_i^{\left(\mathrm{s}\right)} \) reads

$$ {\displaystyle \begin{array}{c}P\left({E}_i^{\left(\mathrm{s}\right)}\right)\propto \exp \left({S}^{\left(\mathrm{s}\right)}\left({E}_i^{\left(\mathrm{s}\right)}\right)/{k}_B\right)\cdot \exp \left({S}^{\left(\mathrm{r}\right)}\left(E-{E}_i^{\left(\mathrm{s}\right)}\right)/{k}_B\right)\\ {}\approx \exp \left({S}^{\left(\mathrm{s}\right)}\left({E}_i^{\left(\mathrm{s}\right)}\right)/{k}_B\right)\cdot \exp \left(\left({S}^{\left(\mathrm{r}\right)}(E)-\frac{dS^{\left(\mathrm{r}\right)}}{dE}\cdot {E}_i^{\left(\mathrm{s}\right)}\right)/{k}_B\right)\\ {}\propto \exp \left({S}^{\left(\mathrm{s}\right)}\left({E}_i^{\left(\mathrm{s}\right)}\right)/{k}_B\right)\cdot \exp \left(-{E}_i^{\left(\mathrm{s}\right)}/\left({k}_B\cdot T\right)\right)\end{array}} $$
(13)

where in the second step, reservoir entropy is expended about S (r)(E) (note that this approximation is valid when a reservoir is much bigger than the system, so \( {E}_i^{\left(\mathrm{s}\right)}\ll E \)), while in the third step the thermodynamic definition of temperature (∂S/∂E)V,N = 1/T is used. The first term in Eq. (13) gives the number of microstates of a system with energy \( {E}_i^{\left(\mathrm{s}\right)} \) (i.e., Ω(s) \( \left({E}_i^{\left(\mathrm{s}\right)}\right) \)), while the second term, called the Boltzmann factor, represents the unnormalized probability of selecting one particular system microstate at energy \( {E}_i^{\left(\mathrm{s}\right)} \), i.e., it represents a statistical weight of that one particular microstate (Sneppen and Zocchi 2005).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodic, A., Blagojevic, B., Djordjevic, M. (2018). Systems Biology of Bacterial Immune Systems: Regulation of Restriction-Modification and CRISPR-Cas Systems. In: Rajewsky, N., Jurga, S., Barciszewski, J. (eds) Systems Biology. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-92967-5_3

Download citation

Publish with us

Policies and ethics