Skip to main content

Modeling and Analyzing the Flow of Molecular Machines in Gene Expression

  • Chapter
  • First Online:
Systems Biology

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Gene expression is a fundamental cellular process by which proteins are synthesized based on the information encoded in the genetic material. During this process, macromolecules such as ribosomes or RNA polymerases scan the genetic material in a sequential manner. We review several deterministic, continuous-time models for the flow of such macromolecules. These models are both easy to simulate and amenable to rigorous mathematical analysis. We demonstrate how these models can be used to predict the expression levels of genes and to study important biological phenomena such as competition for finite resources, sensitivity of gene expression to various biophysical factors, and optimization of the protein production rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024

    Article  PubMed  CAS  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2007) Molecular biology of the cell, 5th edn. Garland Science, New York

    Book  Google Scholar 

  • Aminzare Z, Sontag ED (2014) Contraction methods for nonlinear systems: a brief introduction and some open problems. In: Proceedings of 53rd IEEE conference on decision and control. Los Angeles, CA, pp 3835–3847

    Google Scholar 

  • Ben-Yehezkel T, Atar S, Zur H, Diament A, Goz E, Marx T, Cohen R, Dana A, Feldman A, Shapiro E, Tuller T (2015) Rationally designed, heterologous S. cerevisiae transcripts expose novel expression determinants. RNA Biol 12:972–984

    Article  PubMed  PubMed Central  Google Scholar 

  • Binnie C, Cossar J, Stewart D (1997) Heterologous biopharmaceutical protein expression in streptomyces. Trends Biotechnol 15(8):315–320

    Article  PubMed  CAS  Google Scholar 

  • Blythe RA, Evans MR (2007) Nonequilibrium steady states of matrix-product form: a solver’s guide. J Phys A Math Theor 40(46):R333–R441

    Article  Google Scholar 

  • Bonnin P, Kern N, Young NT, Stansfield I, Romano MC (2017) Novel mRNA-specific effects of ribosome drop-off on translation rate and polysome profile. PLoS Comput Biol 13(5):e1005555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Brackley CA, Romano MC, Thiel M (2011) The dynamics of supply and demand in mRNA translation. PLoS Comput Biol 7(10):e1002203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brauer F (2008) Compartmental models in epidemiology. In: Brauer F, van den Driessche P, Wu J (eds) Mathematical epidemiology. Lecture notes in mathematics, vol 1945. Springer, Berlin, pp 19–79

    Chapter  Google Scholar 

  • Ceroni F, Algar R, Stan GB, Ellis T (2015) Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat Methods 12:415–418

    Article  PubMed  CAS  Google Scholar 

  • Chadani Y, Ono K, Ozawa S, Takahashy Y, Takay K, Nanamiya H, Tozawa Y, Kutsukake K, Abo T (2010) Ribosome rescue by Escherichia coli ArfA (YhdL) in the absence of trans-translation systems. Mol Microbiol 78:796–808

    Article  PubMed  CAS  Google Scholar 

  • Chandar N, Viselli S (2012) Cell and molecular biology. Wolters Kluwer Health, Philadelphia

    Google Scholar 

  • Cheung ACM, Cramer P (2011) Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature 471(7337):249–253

    Article  PubMed  CAS  Google Scholar 

  • Chou T, Lakatos G (2004) Clustered bottlenecks in mRNA translation and protein synthesis. Phys Rev Lett 93(19):198101

    Article  PubMed  CAS  Google Scholar 

  • Chou T, Mallick K, Zia RKP (2011) Non-equilibrium statistical mechanics: from a paradigmatic model to biological transport. Rep Prog Phys 74:116601

    Article  CAS  Google Scholar 

  • Churchman LS, Weissman JS (2011) Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469(7330):368–373

    Article  PubMed  CAS  Google Scholar 

  • Ciandrini L, Stansfield I, Romano M (2013) Ribosome traffic on mRNAs maps to gene ontology: genome-wide quantification of translation initiation rates and polysome size regulation. PLoS Comput Biol 9(1):e1002866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cohen E, Zafrir Z, Tuller T (2017) A code for transcription elongation speed. RNA Biol 1–14. https://doi.org/10.1080/15476286.2017.1384118

  • Coleman J, Papamichail D, Skiena S, Futcher B, Wimmer E, Mueller S (2008) Virus attenuation by genome-scale changes in codon pair bias. Science 320:1784–1787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crick F (1970) Central dogma of molecular biology. Nature 227(5258):561–563

    Article  PubMed  CAS  Google Scholar 

  • Dana A, Tuller T (2012) Efficient manipulations of synonymous mutations for controlling translation rate–an analytical approach. J Comput Biol 19:200–231

    Article  PubMed  CAS  Google Scholar 

  • Dana A, Tuller T (2014a) The effect of tRNA levels on decoding times of mRNA codons. Nucleic Acids Res 42(14):9171–9181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dana A, Tuller T (2014b) Mean of the typical decoding rates: a new translation efficiency index based on the analysis of ribosome profiling data. G3 5(1):73–80

    Article  PubMed  PubMed Central  Google Scholar 

  • Derrida B (1998) An exactly soluble non-equilibrium system: the asymmetric simple exclusion process. Phys Rep 301(1):65–83

    Article  CAS  Google Scholar 

  • Derrida B, Domany E, Mukamel D (1992) An exact solution of a one-dimensional asymmetric exclusion model with open boundaries. J Stat Phys 69(3–4):667–687

    Article  Google Scholar 

  • Derrida B, Evans MR, Hakim V, Pasquier V (1993) Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J Phys A Math Gen 26(7):1493

    Article  Google Scholar 

  • Devi G (2006) siRNA-based approaches in cancer therapy. Cancer Gene Ther 13(9):819–829

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Schmittmann B, Zia RK (2007a) Towards a model for protein production rates. J Stat Phys 128(1–2):21–34

    Article  CAS  Google Scholar 

  • Dong JJ, Schmittmann B, Zia RKP (2007b) Inhomogeneous exclusion processes with extended objects: the effect of defect locations. Phys Rev E 76:051113

    Article  CAS  Google Scholar 

  • Edri S, Gazit E, Cohen E, Tuller T (2014) The RNA polymerase flow model of gene transcription. IEEE Trans Biomed Circuits Syst 8(1):54–64

    Article  PubMed  Google Scholar 

  • Evans M, Blythe R (2002) Nonequilibrium dynamics in low-dimensional systems. Physica A 313(1):110–152

    Article  CAS  Google Scholar 

  • Fabian M, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    Article  PubMed  CAS  Google Scholar 

  • Filipowicz W, Bhattacharyya S, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114

    Article  PubMed  CAS  Google Scholar 

  • Ghildiyal M, Zamore P (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilchrist MA, Wagner A (2006) A model of protein translation including codon bias, nonsense errors, and ribosome recycling. J Theor Biol 239(4):417–434

    Article  PubMed  CAS  Google Scholar 

  • Goz E, Tuller T (2015) Widespread signatures of local mRNA folding structure selection in four Dengue virus serotypes. BMC Genomics 16(10):S4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Greulich P, Ciandrini L, Allen RJ, Romano MC (2012) Mixed population of competing totally asymmetric simple exclusion processes with a shared reservoir of particles. Phys Rev E 85:011142

    Article  CAS  Google Scholar 

  • Gyorgy A, Jimenez JI, Yazbek J, Huang H, Chung H, Weiss R, Del Vecchio D (2015) Isocost lines describe the cellular economy of genetic circuits. Biophys J 109:639–46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holza M, Fahrb A (2001) Compartment modeling. Adv Drug Deliv Rev 48:249–264

    Article  Google Scholar 

  • Horn RA, Johnson CR (2013) Matrix analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Ingolia NT (2014) Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15(3):205–213

    Article  PubMed  CAS  Google Scholar 

  • Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924):218–223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11(4):252–263

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki S, Ingolia NT (2016) Seeing translation. Science 352(6292):1391–1392

    Article  PubMed  CAS  Google Scholar 

  • Jacquez JA (1996) Compartmental analysis in biology and medicine, 3rd edn. BioMedware, Ann Arbor, MI

    Google Scholar 

  • Jacquez JA, Simon CP (1993) Qualitative theory of compartmental systems. SIAM Rev 35(1):43–79

    Article  Google Scholar 

  • Jens M, Rajewsky N (2015) Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat Rev Genet 16(2):113–126

    Article  PubMed  CAS  Google Scholar 

  • Johansson M, Chen J, Tsai A, Kornberg G, Puglisi J (2014) Sequence-dependent elongation dynamics on macrolide-bound ribosomes. Cell Rep 7:1534–1546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keiler K (2015) Mechanisms of ribosome rescue in bacteria. Nat Rev Microbiol 13:285–297

    Article  PubMed  CAS  Google Scholar 

  • Keiler K, Waller P, Sauer R (1996) Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271:990–993

    Article  PubMed  CAS  Google Scholar 

  • Kolomeisky AB (1998) Asymmetric simple exclusion model with local inhomogeneity. J Phys A Math Gen 31(4):1153

    Article  Google Scholar 

  • Kozak M (1986) Point mutations define a sequence flanking the aug initiator codon that modulates translation by eukaryotic ribosomes. Cell 44(2):283–92

    Article  PubMed  CAS  Google Scholar 

  • Kurland C (1992) Translational accuracy and the fitness of bacteria. Ann Rev Genet 26:29–50

    Article  PubMed  CAS  Google Scholar 

  • Kurland C, Mikkola R (1993) The impact of nutritional state on the microevolution of ribosomes. In: Kjelleberg S (ed) Starvation in bacteria. Plenum Press, New York, NY, pp 225–238

    Chapter  Google Scholar 

  • Lakatos G, Chou T (2003) Totally asymmetric exclusion processes with particles of arbitrary size. J Phys A Math Gen 36:20272041

    Article  Google Scholar 

  • Lodish HF (1974) Model for the regulation of mRNA translation applied to haemoglobin synthesis. Nature 251:385–388

    Article  PubMed  CAS  Google Scholar 

  • Lohmiller W, Slotine JJE (1998) On contraction analysis for non-linear systems. Automatica 34:683–696

    Article  Google Scholar 

  • MacDonald CT, Gibbs JH (1969) Concerning the kinetics of polypeptide synthesis on polyribosomes. Biopolymers 7(5):707–725

    Article  CAS  Google Scholar 

  • MacDonald CT, Gibbs JH, Pipkin AC (1968) Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6:1–25

    Article  PubMed  CAS  Google Scholar 

  • Margaliot M, Coogan S (2017) Approximating the frequency response of contractive systems. CoRR abs/1702.06576. http://arxiv.org/abs/1702.06576

  • Margaliot M, Tuller T (2012) Stability analysis of the ribosome flow model. IEEE/ACM Trans Comput Biol Bioinform 9:1545–1552

    Article  PubMed  Google Scholar 

  • Margaliot M, Tuller T (2013) Ribosome flow model with positive feedback. J R Soc Interface 10:20130267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Margaliot M, Sontag ED, Tuller T (2014) Entrainment to periodic initiation and transition rates in a computational model for gene translation. PLoS ONE 9(5):e96039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Margaliot M, Sontag ED, Tuller T (2016) Contraction after small transients. Automatica 67:178–184

    Article  Google Scholar 

  • Margaliot M, Grüne L, Kriecherbauer T (2018) Entrainment in the master equation. Roy Soc Open Sci 5(4). https://doi.org/10.1098/rsos.172157

  • Mayer A, Churchman L (2016) Genome-wide profiling of rna polymerase transcription at nucleotide resolution in human cells with native elongating transcript sequencing. Nat Protoc 11:813–833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mills EW, Green R (2017) Ribosomopathies: there’s strength in numbers. Science 358(6363). https://doi.org/10.1126/science.aan2755

  • Moks T, Abrahmsen L, Holmgren E, Bilich M, Olsson A, Pohl G, Sterky C, Hultberg H, Josephson SA (1987) Expression of human insulin-like growth factor I in bacteria: use of optimized gene fusion vectors to facilitate protein purification. Biochemistry 26(17):5239–5244

    Article  PubMed  CAS  Google Scholar 

  • Myasnikov AG, Kundhavai Natchiar S, Nebout M, Hazemann I, Imbert V, Khatter H, Peyron JF, Klaholz BP (2016) Structure-function insights reveal the human ribosome as a cancer target for antibiotics. Nat Commun 7:12856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Newhart A, Janicki SM (2014) Seeing is believing: Visualizing transcriptional dynamics in single cells. J Cell Physiol 229(3):259–265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nikolaev EV, Rahi SJ, Sontag E (2017) Subharmonics and chaos in simple periodically-forced biomolecular models. bioRxiv p 145201

    Google Scholar 

  • Nudler E (2012) RNA polymerase backtracking in gene regulation and genome instability. Cell 149(7):1438–1445

    Article  PubMed  CAS  Google Scholar 

  • Perez JT, Pham AM, Lorini MH, Chua MA, Steel J, tenOever BR (2009) MicroRNA-mediated species-specific attenuation of influenza A virus. Nat Biotechnol 27(6):572–576

    Article  PubMed  CAS  Google Scholar 

  • Pinkoviezky I, Gov N (2013) Transport dynamics of molecular motors that switch between an active and inactive state. Phys Rev E 88(2):022714

    Article  CAS  Google Scholar 

  • Poker G, Zarai Y, Margaliot M, Tuller T (2014) Maximizing protein translation rate in the nonhomogeneous ribosome flow model: a convex optimization approach. J R Soc Interface 11(100):20140713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raveh A, Zarai Y, Margaliot M, Tuller T (2015) Ribosome flow model on a ring. IEEE/ACM Trans Comput Biol Bioinform 12(6):1429–1439

    Article  PubMed  CAS  Google Scholar 

  • Raveh A, Margaliot M, Sontag E, Tuller T (2016) A model for competition for ribosomes in the cell. J R Soc Interface 13(116):20151062

    Article  PubMed  PubMed Central  Google Scholar 

  • Reuveni S, Meilijson I, Kupiec M, Ruppin E, Tuller T (2011) Genome-scale analysis of translation elongation with a ribosome flow model. PLoS Comput Biol 7(9):e1002127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rice GA, Chamberlin MJ, Kane CM (1993) Contacts between mammalian RNA polymerase II and the template DNA in a ternary elongation complex. Nucleic Acids Res 21(1):113–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richter JD, Smith LD (1981) Differential capacity for translation and lack of competition between mRNAs that segregate to free and membrane-bound polysomes. Cell 27:183–191

    Article  PubMed  CAS  Google Scholar 

  • Romanos M, Scorer C, Clare J (1992) Foreign gene expression in yeast: a review. Yeast 8(6):423–488

    Article  PubMed  CAS  Google Scholar 

  • Russo G, di Bernardo M, Sontag ED (2010) Global entrainment of transcriptional systems to periodic inputs. PLoS Comput Biol 6:e1000739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salis H, Mirsky E, Voigt C (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27(10):946–950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schadschneider A, Chowdhury D, Nishinari K (2011) Stochastic transport in complex systems: from molecules to vehicles. Elsevier, Amsterdam

    Google Scholar 

  • Shapiro E (2012) A mechanical turing machine: blueprint for a biomolecular computer. Interface Focus 2(4):497–503

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharp PM, Emery LR, Zeng K (2010) Forces that influence the evolution of codon bias. Philos Trans R Soc Lond B 365(1544):1203–1212

    Article  CAS  Google Scholar 

  • Shaw LB, Zia RK, Lee KH (2003) Totally asymmetric exclusion process with extended objects: a model for protein synthesis. Phys Rev E Stat Nonlin Soft Matter Phys 68:021910

    Article  PubMed  CAS  Google Scholar 

  • Shaw LB, Kolomeisky AB, Lee KH (2004a) Local inhomogeneity in asymmetric simple exclusion processes with extended objects. J Phys A Math Gen 37(6):2105

    Article  Google Scholar 

  • Shaw LB, Sethna JP, Lee KH (2004b) Mean-field approaches to the totally asymmetric exclusion process with quenched disorder and large particles. Phys Rev E 70(2):021901

    Article  CAS  Google Scholar 

  • Shoemaker C, Eyler D, Green R (2010) Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Science 330(6002):369–372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sin C, Chiarugi D, Valleriani A (2016) Quantitative assessment of ribosome drop-off in E. coli. Nucleic Acids Res 44(6):2528–2537

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith HL (1995) Monotone Dynamical systems: an introduction to the theory of competitive and cooperative systems. Mathematical surveys and monographs, vol 41. American Mathematical Society, Providence, RI

    Google Scholar 

  • Spitzer F (1970) Interaction of Markov processes. Adv Math 5:246–290

    Article  Google Scholar 

  • Subramaniam A, Zid B, O’Shea E (2014) An integrated approach reveals regulatory controls on bacterial translation elongation. Cell 159(5):1200–1211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tavazoie SF, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL, Massagué J (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451(7175):147–152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tripathy G, Barma M (1998) Driven lattice gases with quenched disorder: Exact results and different macroscopic regimes. Phys Rev E 58:1911–1926

    Article  CAS  Google Scholar 

  • Tuller T, Zur H (2015) Multiple roles of the coding sequence 5’ end in gene expression regulation. Nucleic Acids Res 43(1):13–28

    Article  PubMed  CAS  Google Scholar 

  • Tuller T, Carmi A, Vestsigian K, Navon S, Dorfan Y, Zaborske J, Pan T, Dahan O, Furman I, Pilpel Y (2010) An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 141(2):344–354

    Article  PubMed  CAS  Google Scholar 

  • Tuller T, Veksler I, Gazit N, Kupiec M, Ruppin E, Ziv M (2011) Composite effects of gene determinants on the translation speed and density of ribosomes. Genome Biol 12(11):R110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turing A (2004) Intelligent machinery. In: Copeland BJ (ed) The essential turing. Clarendon Press, Oxford, pp 411–432

    Google Scholar 

  • Vind J, Sorensen MA, Rasmussen MD, Pedersen S (1993) Synthesis of proteins in Escherichia coli is limited by the concentration of free ribosomes: expression from reporter genes does not always reflect functional mRNA levels. J Mol Biol 231:678–688

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Contag C, Ilves H, Johnston B, Kaspar R (2005) Small hairpin RNAs efficiently inhibit hepatitis C IRES-mediated gene expression in human tissue culture cells and a mouse model. Mol Ther 12(3):562–568

    Article  PubMed  CAS  Google Scholar 

  • Zadeh LA, Desoer CA (1963) Linear system theory. McGraw-Hill, New York

    Google Scholar 

  • Zaher S, Green R (2009) Quality control by the ribosome following peptide bond formation. Nature 457:161–166

    Article  PubMed  CAS  Google Scholar 

  • Zaher H, Green R (2011) A primary role for elastase factor 3 in quality control during translation elongation in Escherichia coli. Cell 147:396–408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zarai Y, Tuller T (2018) Oscillatory behavior at the translation level induced by mRNA levels oscillations due to finite intracellular resources. PLoS Comput Biol 14(4):e1006055

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarai Y, Margaliot M, Kolomeisky AB (2017a) A deterministic model for one-dimensional excluded flow with local interactions. PLoS ONE 12(8):1–23

    Google Scholar 

  • Zarai Y, Margaliot M, Sontag ED, Tuller T (2017b) Controllability analysis and control synthesis for the ribosome flow model. IEEE/ACM Trans Comput Biol Bioinform (to appear)

    Google Scholar 

  • Zarai Y, Margaliot M, Tuller T (2017c) A deterministic mathematical model for bidirectional excluded flow with langmuir kinetics. PLoS ONE 12(8):e0182178

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarai Y, Margaliot M, Tuller T (2017d) Optimal down regulation of mRNA translation. Sci Rep 7:41243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zarai Y, Margaliot M, Tuller T (2017e) Ribosome flow model with extended objects. J R Soc Interface 14(135)

    Google Scholar 

  • Zarai Y, Ovseevich A, Margaliot M (2017f) Optimal translation along a circular mRNA. Sci Rep 7:9464

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Yang N, Mohamed-Hadley A, Rubin S, Coukos G (2003) Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem Biophys Res Commun 303(4):1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Fedyunin I, Miekley O, Valleriani A, Moura A, Ignatova Z (2010) Global and local depletion of ternary complex limits translational elongation. Nucleic Acids Res 38(14):4778–4787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zia R, Dong J, Schmittmann B (2011) Modeling translation in protein synthesis with TASEP: a tutorial and recent developments. J Stat Phys 144:405–428

    Article  CAS  Google Scholar 

  • Zupanic A, Meplan C, Grellscheid SM, Mathers JC, Kirkwood TB, Hesketh JE, Shanley DP (2014) Detecting translational regulation by change point analysis of ribosome profiling data sets. RNA 20(10):1507–1518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zur H, Tuller T (2012) RFMapp: ribosome flow model application. Bioinformatics 28(12):1663–1664

    Article  PubMed  CAS  Google Scholar 

  • Zur H, Tuller T (2013) New universal rules of eukaryotic translation initiation fidelity. PLoS Comput Biol 9(7):e1003136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zur H, Tuller T (2016) Predictive biophysical modeling and understanding of the dynamics of mRNA translation and its evolution. Nucleic Acids Res 44(19):9031–9049

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamir Tuller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zarai, Y., Margaliot, M., Tuller, T. (2018). Modeling and Analyzing the Flow of Molecular Machines in Gene Expression. In: Rajewsky, N., Jurga, S., Barciszewski, J. (eds) Systems Biology. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-92967-5_14

Download citation

Publish with us

Policies and ethics