Skip to main content

Novel Insights of the Gene Translational Dynamic and Complex Revealed by Ribosome Profiling

  • Chapter
  • First Online:
Systems Biology

Part of the book series: RNA Technologies ((RNATECHN))

  • 1702 Accesses

Abstract

Biology research has entered into the big data era. Systems biology approaches, therefore, have become essential tools to elucidate the whole landscape of how cells separate, grow, and resist different stresses. In 2009, a novel RNA technology, termed ribosome profiling, was invented by Dr. Jonathan Weissman Lab from UCSF. Ribosome profiling (Ribo-Seq) is a powerful tool which can provide the most direct readout of the intracellular translation state of a protein including information on the location of translation start/stop sites, ribosome distribution pattern, and even the moving rate of the translating ribosome, at the whole-genome scale and single-nucleotide resolution.

To date, many researchers including our lab have successfully applied ribosome profiling method for diverse purposes. We thus review in this chapter the underlying mechanism and recent advances as regards this fantastic tool. Firstly, we introduce the working mechanism, advantages, and study history of ribosome profiling. Secondly, we discuss the data analysis pipeline, also compare different statistical algorithms and data visualization software. Finally, we review the extensive applications of Ribo-seq, for example, identification of uORF, computation of global translation efficiency (TE), the study of the posttranscriptional regulatory role of RNA binding protein and others. We hope this chapter would be useful for interested systems biology researchers as well as RNA biologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeschimann F, Kumari P, Bartake H et al (2017) LIN41 post-transcriptionally silences mRNAs by two distinct and position-dependent mechanisms. Mol Cell 65:476–489

    Article  CAS  PubMed  Google Scholar 

  • Artieri CG, Fraser HB (2014) Evolution at two levels of gene expression in yeast. Genome Res 24:411–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baek J, Lee J, Yoon K et al (2017) Identification of unannotated small genes in Salmonella. G3 (Bethesda) 7:983–989

    Article  CAS  Google Scholar 

  • Barry KC, Ingolia NT, Vance RE (2017) Global analysis of gene expression reveals mRNA superinduction is required for the inducible immune response to a bacterial pathogen. eLife 6:e22707

    Article  PubMed  PubMed Central  Google Scholar 

  • Benhalevy D, Gupta SK, Danan CH et al (2017) The human CCHC-type zinc finger nucleic acid-binding protein binds G-rich elements in target mRNA coding sequences and promotes translation. Cell Rep 18:2979–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bercovich-Kinori A, Tai J, Gelbart IA et al (2016) A systematic view on influenza induced host shutoff. eLife 5:e18311

    Article  PubMed  PubMed Central  Google Scholar 

  • Brar GA, Weissman JS (2015) Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat Rev Mol Cell Biol 16:651–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brar GA, Yassour M, Friedman N et al (2012) High-resolution view of the yeast meiotic program revealed by ribosome profiling. Science 335:552–557

    Article  CAS  PubMed  Google Scholar 

  • Calviello L, Mukherjee N, Wyler E et al (2016) Detecting actively translated open reading frames in ribosome profiling data. Nat Methods 13:165–170

    Article  CAS  PubMed  Google Scholar 

  • Chotewutmontri P, Barkan A (2016) Dynamics of chloroplast translation during chloroplast differentiation in maize. PLoS Genet 12:e1006106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun SY, Rodriguez CM, Todd PK et al (2016) SPECtre: a spectral coherence-based classifier of actively translated transcripts from ribosome profiling sequence data. BMC Bioinformatics 17:482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung BY, Hardcastle TJ, Jones JD et al (2015) The use of duplex-specific nuclease in ribosome profiling and a user-friendly software package for Ribo-seq data analysis. RNA 21:1731–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fields AP, Rodriguez EH, Jovanovic M et al (2015) A regression-based analysis of ribosome-profiling data reveals a conserved complexity to mammalian translation. Mol Cell 60:816–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerashchenko MV, Gladyshev VN (2017) Ribonuclease selection for ribosome profiling. Nucleic Acids Res 45:e6

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Ingolia NT, Weissman JS et al (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haft RJ, Keating DH, Schwaegler T (2014) Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria. Proc Natl Acad Sci USA 111:E2576–E2585

    Article  CAS  PubMed  Google Scholar 

  • Hsieh AC, Liu Y, Edlind MP et al (2012) The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485:55–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu PY, Calviello L, Wu HL et al (2016) Super-resolution ribosome profiling reveals unannotated translation events in Arabidopsis. Proc Natl Acad Sci USA 113:E7126–E7135

    Article  CAS  PubMed  Google Scholar 

  • Hwang JY, Buskirk AR (2017) A ribosome profiling study of mRNA cleavage by the endonuclease RelE. Nucleic Acids Res 45:327–336

    Article  CAS  PubMed  Google Scholar 

  • Ingolia NT, Ghaemmaghami S, Newman JR et al (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147:789–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jan CH, Williams CC, Weissman JS (2014) Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. Science 346:1257521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juntawong P, Girke T, Bazin J et al (2014) Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis. Proc Natl Acad Sci USA 111:E203–E212

    Article  CAS  PubMed  Google Scholar 

  • Latif H, Szubin R, Tan J et al (2015) A streamlined ribosome profiling protocol for the characterization of microorganisms. Biotechniques 58:329–332

    Article  CAS  PubMed  Google Scholar 

  • Legendre R, Baudin-Baillieu A, Hatin I et al (2015) RiboTools: a Galaxy toolbox for qualitative ribosome profiling analysis. Bioinformatics 31:2586–2588

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Jiang H, Gu Z et al (2013a) High-resolution view of bacteriophage lambda gene expression by ribosome profiling. Proc Natl Acad Sci USA 110:11928–11933

    Article  PubMed  Google Scholar 

  • Liu MJ, Wu SH, Wu JF et al (2013b) Translational landscape of photomorphogenic Arabidopsis. Plant Cell 25:3699–3710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loayza-Puch F, Rooijers K, Buil LC et al (2016) Tumour-specific proline vulnerability uncovered by differential ribosome codon reading. Nature 530:490–494

    Article  CAS  PubMed  Google Scholar 

  • Loayza-Puch F, Rooijers K, Zijlstra J et al (2017) TGFβ1-induced leucine limitation uncovered by differential ribosome codon reading. EMBO Rep 18:549–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinney C, Zavadil J, Bianco C et al (2014) Global reprogramming of the cellular translational landscape facilitates cytomegalovirus replication. Cell Rep 6:9–17

    Article  CAS  PubMed  Google Scholar 

  • McManus CJ, May GE, Spealman P et al (2014) Ribosome profiling reveals post-transcriptional buffering of divergent gene expression in yeast. Genome Res 24:422–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merchante C, Brumos J, Yun J et al (2015) Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2. Cell 163:684–697

    Article  CAS  PubMed  Google Scholar 

  • Michel AM, Fox G, M Kiran A et al (2014) GWIPS-viz: development of a ribo-seq genome browser. Nucleic Acids Res 42:D859–D864

    Article  CAS  PubMed  Google Scholar 

  • Michel AM, Mullan JP, Velayudhan V et al (2016) RiboGalaxy: a browser based platform for the alignment, analysis and visualization of ribosome profiling data. RNA Biol 13:316–319

    Article  PubMed  PubMed Central  Google Scholar 

  • Miranda-CasoLuengo AA, Staunton PM, Dinan AM et al (2016) Functional characterization of the Mycobacterium abscessus genome coupled with condition specific transcriptomics reveals conserved molecular strategies for host adaptation and persistence. BMC Genomics 17:553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh E, Becker AH, Sandikci A et al (2011) Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 147:1295–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olexiouk V, Crappé J, Verbruggen S et al (2016) sORFs.org: a repository of small ORFs identified by ribosome profiling. Nucleic Acids Res 44:D324–D329

    Article  CAS  PubMed  Google Scholar 

  • Popa A, Lebrigand K, Paquet A et al (2016) RiboProfiling: a bioconductor package for standard Ribo-seq pipeline processing. F1000Res 5:1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid DW, Shenolikar S, Nicchitta CV (2015) Simple and inexpensive ribosome profiling analysis of mRNA translation. Methods 91:69–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrader JM, Li GW, Childers WS et al (2016) Dynamic translation regulation in Caulobacter cell cycle control. Proc Natl Acad Sci USA 113:E6859–E6867

    Article  CAS  PubMed  Google Scholar 

  • Sendoel A, Dunn JG, Rodriguez EH et al (2017) Translation from unconventional 5′ start sites drives tumour initiation. Nature 541:494–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shell SS, Wang J, Lapierre P et al (2015) Leaderless transcripts and small proteins are common features of the mycobacterial translational landscape. PLoS Genet 11:e1005641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern-Ginossar N, Weisburd B, Michalski A et al (2012) Decoding human cytomegalovirus. Science 338:1088–1093

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Wang Z, Guo X et al (2016) Coordinated evolution of transcriptional and post-transcriptional regulation for mitochondrial functions in yeast strains. PLoS One 11:e0153523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Sun X, Zhao Y et al (2015) Evolution of gene regulation during transcription and translation. Genome Biol Evol 7:1155–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams CC, Jan CH, Weissman JS (2014) Targeting and plasticity of mitochondrial proteins revealed by proximity-specific ribosome profiling. Science 346:748–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie SQ, Nie P, Wang Y et al (2016) RPFdb: a database for genome wide information of translated mRNA generated from ribosome profiling. Nucleic Acids Res 44:D254–D258

    Article  CAS  PubMed  Google Scholar 

  • Zhong Y, Karaletsos T, Drewe P et al (2017) RiboDiff: detecting changes of mRNA translation efficiency from ribosome footprints. Bioinformatics 33:139–141

    Article  CAS  PubMed  Google Scholar 

  • Zoschke R, Watkins KP, Barkan A (2013) A rapid ribosome profiling method elucidates chloroplast ribosome behavior in vivo. Plant Cell 25:2265–2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize for not being able to cite many works owing to lack of space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z., Gu, Z. (2018). Novel Insights of the Gene Translational Dynamic and Complex Revealed by Ribosome Profiling. In: Rajewsky, N., Jurga, S., Barciszewski, J. (eds) Systems Biology. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-92967-5_12

Download citation

Publish with us

Policies and ethics