Skip to main content

Molecular Targets for Improvement of Crop Nitrogen Use Efficiency: Current and Emerging Options

  • Chapter
  • First Online:
Book cover Engineering Nitrogen Utilization in Crop Plants

Abstract

Unused fertilizers are the single largest source of nitrous oxide greenhouse gas emissions globally, apart from causing N-pollution in ground and surface waters and eutrophication. While short-term improvements in N-use efficiency (NUE) can be made by agronomic practices, long-term crop improvement is only possible through biological interventions. The lack of clearly defined phenotype and genotype has delayed this process till recently, but the advent of omics and reverse genetics is opening up new avenues to improve crop NUE. It is becoming increasingly evident that several genes and pathways contribute to NUE. Many N-responsive regulators of root development, sensing and signaling, transportation, utilization and remobilization have been targeted to improve NUE, such as C-terminally encoded peptides (CEPs), CLAVATA3/endosperm surrounding region-related peptides (CLE), MADS-box transcription factors, and NAC transcription factors. The nitrate transporter of NRT1.1 is proposed to be a sensor or transceptor, which regulates the crop yield by acting as a component in the Ca2+-mediated signaling cascade. Several other signaling pathways involving target of rapamycin (TOR) complex, general amino acid control non-derepressible 2 (GCN2), ionotropic glutamate-like receptor (iGLR), and PII proteins have been found to play a important roles in maintaining proper N balance in plants. In cereals, cytosolic glutamine synthase, glutamate synthetase, and alanine/aspartate aminotransferases are important targets, as they are involved in remobilization of N from senescing leaves during grain filling and in maintaining proper C/N balance. Several post-transcriptional regulators such as non-coding small RNAs and post-translational regulators such as kinases and phosphatases regulate the expression level of genes involved in N-response/NUE and are emerging as novel targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdula SE, Lee HJ, Kim J, Niño MC, Jung Y-J, Cho Y-C abd Cho Y-G (2016) BrUGE1transgenic rice showed improved growth performance with enhanced drought tolerance. Breed Sci 66(2), 226–233

    Google Scholar 

  • Alvarez JM, Riveras E, Vidal EA, Gras DE, Contreras‐López O, Tamayo KP, Aceituno F, Gómez I, Ruffel S, Lejay L, Jordana X (2014) Systems approach identifies TGA1 and TGA4 transcription factors as important regulatory components of the nitrate response of Arabidopsis thaliana roots. The Plant J 80(1):1–3

    Google Scholar 

  • Araya T, Miyamoto M, Wibowo J, Suzuki A, Kojima S, Tsuchiya YN, Sawa S, Fukuda H, von Wirén N, Takahashi H (2014) CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner. P Natl A Sci 111(5):2029–2034

    Google Scholar 

  • Araya T, von Wirén N, Takahashi H (2016) CLE peptide signaling and nitrogen interactions in plant root development. Plant Mol Biol 91(6):607–615

    Google Scholar 

  • Bargmann BOR, Marshall-Colon A, Efroni I, Ruffel S, Birnbaum KD, Coruzzi GM, Krouk G (2013) TARGET: A Transient Transformation System for Genome-Wide Transcription Factor Target Discovery. Mol Pla 6(3):978–980

    Google Scholar 

  • Bellegarde F, Gojon A, Martin A (2017) Signals and players in the transcriptional regulation of root responses by local and systemic N signaling in Arabidopsis thaliana. J Exp Bot 68(10):2553–2565

    Article  CAS  PubMed  Google Scholar 

  • Bouguyon E, Brun F, Meynard D, Kubeš M, Pervent M, Leran S, Lacombe B, Krouk G, Guiderdoni E, Zažímalová E, Hoyerová K (2015) Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nat Plants 1(3):15015

    Google Scholar 

  • Castaings L, Camargo A, Pocholle D, Gaudon V, Texier Y, Boutet‐Mercey S, Taconnat L, Renou J, Daniel‐Vedele F, Fernandez E, Meyer C, Krapp, A (2009) The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. The Plant J 57(3):426–435

    Article  CAS  PubMed  Google Scholar 

  • Calatrava V, Chamizo-Ampudia A, Sanz-Luque E, Ocaña-Calahorro F, Llamas A, Fernandez E, Galvan A (2017) How Chlamydomonas handles nitrate and the nitric oxide cycle. J Exp Bot 68(10):2593–2602

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty N. and Raghuram N. (2011) Nitrate sensing and signaling in genomewide plant N response. In Nitrogen Use Efficiency in Plants, V. Jain, P. Anandakumar (eds) New India Publishing Agency, New Delhi. pp. 45–62

    Google Scholar 

  • Chen L, Liao H (2017) Engineering crop nutrient efficiency for sustainable agriculture. J Integr Plant Biol 59(10):710–735

    Google Scholar 

  • Chien P-S, Chiang C-B, Wang Z, Chiou T-J (2017) MicroRNA-mediated signaling and regulation of nutrient transport and utilization. Curr Opinion in Plant Biol 39:73–79

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Pathak RR, Choudhury D, Raghuram N (2007) Genomewide computational analysis of nitrate response elements in rice and Arabidopsis. Mol Genet Genomics 278(5):519–525

    Google Scholar 

  • Dellero Y, Lamothe-Sibold M, Jossier M, Hodges M (2015) Arabidopsis thaliana ggt1 photorespiratory mutants maintain leaf carbon: nitrogen balance by reducing RuBisCO content and plant growth. The Plant J 83(6):1005–1018

    Google Scholar 

  • Dobrenel T, Caldana C, Hanson J, Robaglia C, Vincentz M, Veit B, Meyer C (2016) TOR signaling and nutrient sensing. Ann Rev Plant Biol 67(1):261–285

    Article  CAS  Google Scholar 

  • Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, Lian X, Shen Q, Miller AJ, Xu G (2016) Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. P Natl A Sci 113(26):7118–7123

    Google Scholar 

  • Fan X, Naz M, Fan X, Xuan W, Miller AJ, Xu G (2017) Plant nitrate transporters: from gene function to application. J Exp Bot 68(10):2463–2475

    Article  CAS  PubMed  Google Scholar 

  • Forde BG (2014). Nitrogen signalling pathways shaping root system architecture: an update. Curr Opin Plant Biol 21:30–36

    Google Scholar 

  • Forde BG, Cutler SR, Zaman N, Krysan PJ (2013) Glutamate signalling via a MEKK1 kinase-dependent pathway induces changes in Arabidopsis root architecture. The Plant J 75(1):1–10

    Google Scholar 

  • Gaju O, Allard V, Martre P, Snape JW, Heumez E, LeGouis J,  Moreau D, Bogard M, Griffiths S, Orford S, Hubbart S (2011) Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crops Res 123(2):139–152

    Article  Google Scholar 

  • Gan Y, Bernreiter A, Filleur S, Abram B, Forde BG (2012) Overexpressing the ANR1 MADS-box gene in transgenic plants provides new insights into its role in the nitrate regulation of root development. Plant Cell Physiol 53(6):1003–1016

    Google Scholar 

  • Gent L, Forde BG (2017) How do plants sense their nitrogen status? J Exp Bot 68(10):2531–2539

    Google Scholar 

  • Gifford ML, Banta JA, Katari MS, Hulsmans J, Chen L, Ristova D, Tranchina D, Purugganan MD, Coruzzi GM, Birnbaum KD (2013) Plasticity regulators modulate specific root traits in discrete nitrogen environments. PLoS Genet 9(9):e1003760

    Google Scholar 

  • Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD (2017) Cell-specific nitrogen responses mediate developmental plasticity. P Natl A Sci 105(2):803–808

    Google Scholar 

  • Gutiérrez RA, Stokes TL, Thum K, Xu X, Obertello M, Katari MS, Tanurdzic M, Dean A, Nero DC, McClung CR, Coruzzi GM (2008) Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1. P Natl A Sci 105(12):4939–4944

    Google Scholar 

  • He X, Qu B, Li W, Zhao X, Teng W, Ma W,  Ren Y, Li B, Li Z,Tong Y (2015) The nitrate-inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield. Plant Physiol 169(3):1991–2005

    Google Scholar 

  • Havé M, Marmagne A, Chardon F, Masclaux-Daubresse C (2016) Nitrogen remobilisation during leaf senescence: lessons from Arabidopsis to crops. J Exp Bot 68(10):2513–2529

    Google Scholar 

  • Ho CH, Lin SH, Hu HC, Tsay YF (2009) CHL1 functions as a nitrate sensor in plants. Cell 138(6):1184–1194

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, Liang C, Liu L, Piao Z, Deng Q, Deng K, Xu C, Liang Y, Zhang L, Li L, Chu C (2015) Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics 47(7):834–838

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Chen S, Liang Z, Zhang C, Yan M, Chen J, Xu G, Fan X, Zhang Y (2015) Knockdown of the partner protein OsNAR2.1 for high-affinity nitrate transport represses lateral root formation in a nitrate-dependent manner. Sci Rep 5:18192

    Google Scholar 

  • Klemens PAW, Patzke K, Deitmer J, Spinner L, Le Hir R, Bellini C, Bedu M, Chardon F, Krapp A, Neuhaus HE (2013) Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiol 163(3):1338–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krapp A, David LC, Chardin C, Girin T, Marmagne A, Leprince A-S, Chaillou S, Ferrario-Méry S, Meyer C, Daniel-Vedele F (2014) Nitrate transport and signaling in Arabidopsis. J Exp Bot 65(3):789–798

    Article  CAS  PubMed  Google Scholar 

  • Li H, Hu B, Chu C (2017) Nitrogen use efficiency in crops: lessons from Arabidopsis and rice. J Exp Bot 68(10):2477–2488

    Google Scholar 

  • Li X, Zeng R, Liao H (2016) Improving crop nutrient efficiency through root architecture modifications. J Integr Plant Biol 58(3):193–202

    Article  PubMed  Google Scholar 

  • Liu KH, Niu Y, Konishi M, Wu Y, Du H, Chung HS, Li L, Boudsocq M, McCormack M, Maekawa S, Ishida T (2017) Discovery of nitrate–CPK–NLP signalling in central nutrient–growth networks. Nature 545(7654):311–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Han X, Zhan G, Zhao Z, Feng Y, Wu C (2015) A novel sucrose-regulatory MADS-box transcription factor GmNMHC5 promotes root development and nodulation in soybean (Glycine max [L.] Merr.). Int J Mol Sci 16(9):20657–20673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Sun Q, Wang K, Du Q, Li W-X (2016) Nitrogen limitation adaptation (NLA) is involved in source-to-sink remobilization of nitrate by mediating the degradation of NRT1.7 in Arabidopsis. New Phytol 214(2):734–744

    Google Scholar 

  • Liu Y, von Wirén N (2017) Ammonium as a signal for physiological and morphological responses in plants. J Exp Bot 68(10):2581–2592

    Article  CAS  PubMed  Google Scholar 

  • Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112(2):347–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma W, Li J, Qu B, He X, Zhao X, Li B, Fu X, Tong Y (2014) Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis. The Plant J 78(1):70–79

    Article  CAS  PubMed  Google Scholar 

  • Marchive C, Roudier F, Castaings L, Bréhaut V, Blondet E, Colot V, Meyer C, Krapp A (2013) Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat Commun 4:1713

    Article  CAS  PubMed  Google Scholar 

  • Młodzińska E, Kłobus G, Christensen MD, Fuglsang AT (2015) The plasma membrane H(+)-ATPase AHA2 contributes to the root architecture in response to different nitrogen supply. Physiol Plant 154(2):270–282

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki S, Jikumaru Y, Nakamura H, Koiwai H, Sasaki K, Kamiya Y, Kamiya Y, Ichikawa H, Minami E, Nishizawa Y (2014) Ubiquitin ligase EL5 maintains the viability of root meristems by influencing cytokinin-mediated nitrogen effects in rice. J Exp Bot 65(9):2307–2318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morita S, Suga T, Yamazaki K (1988) The relationship between root length density and yield in rice plants. Jpn J Crop Sci 57(3):438–443

    Article  Google Scholar 

  • Murray JD, Liu C-W, Chen Y, Miller AJ (2016) Nitrogen sensing in legumes. J Exp Bot 68(8):1919–1926

    Google Scholar 

  • Nishizawa Y, Mochizuki S, Koiwai H, Kondo K, Kishimoto K, Katoh E, Minami E (2015) Rice ubiquitin ligase EL5 prevents root meristematic cell death under high nitrogen conditions and interacts with a cytosolic GAPDH. Plant Signal Behav 10(3):e990801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguero M, Lacombe B (2016) Transporters involved in root nitrate uptake and sensing by Arabidopsis. Front Plant Sci (7):1391

    Google Scholar 

  • O’Brien JA, Vega A, Bouguyon E, Krouk G, Gojon A, Coruzzi G, Gutiérrez RA (2016) Nitrate transport, sensing, and responses in plants. Mol Plant 9(6):837–856

    Article  CAS  Google Scholar 

  • Ohyama K, Ogawa M, Matsubayashi Y (2008) Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis. The Plant J 55(1):152–160

    Article  CAS  PubMed  Google Scholar 

  • Okamoto S, Suzuki T, Kawaguchi M, Higashiyama T, Matsubayashi Y (2015) A comprehensive strategy for identifying long-distance mobile peptides in xylem sap. The Plant J 84(3):611–620

    Article  CAS  Google Scholar 

  • Okumoto S, Versaw W (2017) Genetically encoded sensors for monitoring the transport and concentration of nitrogen-containing and phosphorus-containing molecules in plants. Curr Opin Plant Biol 39:129–135

    Google Scholar 

  • Ondzighi-Assoume CA, Chakraborty S, Harris JM (2016) Environmental nitrate stimulates abscisic acid accumulation in Arabidopsis root tips by releasing it from inactive stores. Plant Cell 28(3):729–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak RR, Ahmad A, Lochab S, Raghuram N (2008) Molecular physiology of plant N-use efficiency and biotechnological options for its enhancement. Curr Sci 94(11):1394–1403

    CAS  Google Scholar 

  • Pathak RR, Das SK, Choudhury D, Raghuram N (2009) Genomewide bioinformatic analysis negates any specific role for Dof, GATA and Ag/cTCA motifs in nitrate responsive gene expression in Arabidopsis. Physiol Mol Biol Pla 15(2):145–150

    Google Scholar 

  • Pathak RR, Lochab S, Raghuram N (2011) Improving nitrogen use efficiency. In Compr Biotechnol, vol 4, 2nd edn. Elsevier, Oxford, pp 209–218

    Chapter  Google Scholar 

  • Qin S, Sun X, Hu C, Tan Q, Zhao X, Xin J, Wen X (2017) Effect of NO3:NH4+ ratios on growth, root morphology and leaf metabolism of oilseed rape (Brassica napus L.) seedlings. Acta Physiol Plant 39(9):198

    Article  CAS  Google Scholar 

  • Qu B, He X, Wang J, Zhao Y, Teng W, Shao A, Zhao X, Ma W, Wang J, Li B, Li Z (2015) A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input. Plant Physiol 167(2):411–423

    Article  CAS  PubMed  Google Scholar 

  • Reddy MM, Ulaganathan K (2015) Nitrogen nutrition, its regulation and biotechnological approaches to improve crop productivity. Am J Plant Sci 6(18):2745–2798

    Article  CAS  Google Scholar 

  • Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde BG, Gojon A (2006) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci USA 103(50):19206–19211

    Article  CAS  PubMed  Google Scholar 

  • Riveras E, Alvarez JM, Vidal EA, Oses C, Vega A, Gutiérrez RA (2015) The calcium ion is a second messenger in the nitrate signaling pathway of Arabidopsis 1. Plant Physiol 177(1):00961

    Google Scholar 

  • Roberts I, Smith S, Stes E, De Rybel B, Staes A, Van De Cotte B, Njo MF, Dedeyne L, Demol H, Lavenus J, Audenaert D (2016) CEP5 and XIP1/CEPR1 regulate lateral root initiation in Arabidopsis. J Exp Bot 67(16):4889–4899

    Google Scholar 

  • Rosas U, Cibrian-Jaramillo A, Ristova D, Banta JA, Gifford ML, Fan AH, Zhou RW, Kim GJ, Krouk G, Birnbaum KD, Purugganan MD (2013) Integration of responses within and across Arabidopsis natural accessions uncovers loci controlling root systems architecture. P Natl A Sci 110(37):15133–15138

    Google Scholar 

  • Rothstein SJ, Bi Y-M, Coneva V, Han M, Good A (2014) The challenges of commercializing second-generation transgenic crop traits necessitate the development of international public sector research infrastructure. J Exp Bot 65(19):5673–5682

    Article  CAS  PubMed  Google Scholar 

  • Sesma A, Castresana C, Castellano MM (2017) Regulation of translation by TOR, eIF4E and eIF2α in plants: current knowledge, challenges and future perspectives. Front Plant Sci 8:644

    Google Scholar 

  • Shahzad Z, Amtmann A (2017) Food for thought: how nutrients regulate root system architecture. Curr Opin Plant Biol 39:80–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha VB, Jangam AP, Raghuram N (2018) Biological determinants of crop N use efficiency and biotechnological avenues for improvement. In: Masso C, Bleeker A, Raghuram N, Bekunda M, Sutton M (eds) Proceedings of the N2013. Springer

    Google Scholar 

  • Slovak R, Göschl C, Su X, Shimotani K, Shiina T, Busch W (2014) A scalable open-source pipeline for large-scale root phenotyping of Arabidopsis. Plant Cell 26(6):2390–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffens B, Rasmussen A (2016) The physiology of adventitious roots. Plant Physiol 170(2):603–617

    Article  CAS  PubMed  Google Scholar 

  • Sun C-H, Yu J-Q, Hu D-G (2017) Nitrate: a crucial signal during lateral roots development. Front Plant Sci 8:485

    PubMed  PubMed Central  Google Scholar 

  • Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q, Han R, Zhao M, Dong G, Guo L, Zhu X, Gou Z, Wang W, Wu Y, Lin H, Fu X (2014) Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet 46(6):652–656

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Ye M, Peng S, Li Y (2016) Nitrogen can improve the rapid response of photosynthesis to changing irradiance in rice (Oryza sativa L.) plants. Sci Rep 6(1):31305

    Google Scholar 

  • Sutton MA, Bleeker A, Howard CM, Bekunda M, Grizzetti B, de Vries W, van Grinsven HJM, Abrol YP, Adhya TK, Billen G,. Davidson EA, Datta A, Diaz R, Erisman JW, Liu XJ, Oenema O, Palm C, Raghuram N, Reis S, Scholz RW, Sims T, Westhoek H, Zhang FS, with contributions from Ayyappan S, Bouwman AF, Bustamante M, Fowler D, Galloway JN, Gavito ME, Garnier J, Greenwood S, Hellums DT, Holland M, Hoysall C, Jaramillo VJ, Klimont Z, Ometto JP, Pathak H, Plocq Fichelet V, Powlson D, Ramakrishna K, Roy A, Sanders K, Sharma C, Singh B, Singh U, Yan XY, Zhang Y (2013) Our nutrient world: the challenge to produce more food and energy with less pollution. Global Overview of Nutrient Management, Centre for Ecology and Hydrology, Edinburgh on behalf of the Global Partnership on Nutrient Management and the International Nitrogen Initiative

    Google Scholar 

  • Tabata R, Sumida K, Yoshii T, Ohyama K, Shinohara H, Matsubayashi Y (2014) Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science (New York, N.Y.) 346(6207):343–346

    Article  CAS  Google Scholar 

  • Undurraga SF, Ibarra-Henríquez C, Fredes I, Álvarez JM, Gutiérrez RA (2017) Nitrate signaling and early responses in Arabidopsis roots. J Exp Bot 68(10):2541–2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal EA, Moyano TC, Riveras E, Contreras-López O, Gutiérrez RA (2013) Systems approaches map regulatory networks downstream of the auxin receptor AFB3 in the nitrate response of Arabidopsis thaliana roots. P Natl A Sci 110(31):12840–12845

    Google Scholar 

  • Vidal EA, Viviana A, Lu C, Parry G, Green PJ, Coruzzi GM, Gutiérrez RA (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis Thaliana. P Natl A Sci 107(9):4477–4482

    Google Scholar 

  • Verzeaux J, Hirel B, Dubois F, Lea PJ, Tétu T (2017) Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: basic and agronomic aspects. Plant Sci 264:48–56

    Google Scholar 

  • Wada S, Hayashida Y, Izumi M, Kurusu T, Hanamata S, Kanno K, Kojima S, Yamaya T, Kuchitsu K, Makino A, Ishida H (2015) Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice. Plant Physiol 168(1):60–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan TE, Xue HE, TONG YP (2017) Transgenic approaches for improving use efficiency of nitrogen, phosphorus and potassium in crops. J Integr Agri 16 (12):60345–60347

    Google Scholar 

  • Wang R, Tischner R, Gutiérrez RA, Hoffman M, Xing X, Chen M, Coruzzi G, Crawford NM (2004) Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol 136(1):2512–2522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Peng F, Li M, Yang L, Li G (2012) Expression of a heterologous SnRK1 in tomato increases carbon assimilation, nitrogen uptake and modifies fruit development. J Plant Physiol 169(12):1173–1182

    Article  CAS  PubMed  Google Scholar 

  • Weiland M, Mancuso S, Baluska F (2014) Signalling via glutamate and GLRs in Arabidopsis thaliana. Funct Plant Biol 43(1):1–25

    Google Scholar 

  • Xuan W, Beeckman T, Xu G (2017) Plant nitrogen nutrition: sensing and signaling. Curr Opin Plant Biol 39:57–65

    Article  CAS  PubMed  Google Scholar 

  • Xu N, Wang R, Zhao L, Zhang C, Li Z, Lei Z, Liu F, Guan P, Chu Z, Crawford NM,Wang Y (2016) The Arabidopsis NRG2 protein mediates nitrate signaling and interacts with and regulates key nitrate regulators. The Plant Cell 28(2):485–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • York LM, Silberbush M, Lynch JP (2016) Spatiotemporal variation of nitrate uptake kinetics within the maize (Zea mays L.) root system is associated with greater nitrate uptake and interactions with architectural phenes. J Exp Bot 67(12):3763–3775

    Article  CAS  PubMed  Google Scholar 

  • Yang JC, Zhang H, Zhang JH (2012) Root morphology and physiology in relation to the yield formation of rice. J Integr Agri 11(6):920–926

    Article  CAS  Google Scholar 

  • Yan Y, Wang H, Hamera S, Chen X, Fang R (2014) MiR444a has multiple functions in the rice nitrate-signaling pathway. The Plant J 78(1):44–55

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Liu Y, Zhang A, Su S, Yan A, Huang L, Ali I, Liu Y, Forde BG, Gan Y (2015) MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice. PLoS One 10(8):e0135196.

    Google Scholar 

  • Yu LH, Miao ZQ, Qi GF, Wu J, Cai XT, Mao JL, Xiang CB (2014) MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals. Mol Plant 7:1653–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu LH, Wu J, Tang H, Yuan Y, Wang S-M, Wang Y-P, Zhu QS, Li SG, Xiang C-B (2016) Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation. Scientific reports 6:27795

    Google Scholar 

  • Zeng D-D, Qin R, Li M, Alamin M, Jin X-L, Liu Y, Shi C-H (2016) The ferredoxin-dependent glutamate synthase (OsFd-GOGAT) participates in leaf senescence and the nitrogen remobilization in rice. Mol Genet Genomics 292(2):385–395

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science (New York, N.Y.) 279(5349):407–409

    Article  CAS  Google Scholar 

  • Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y (2015) Managing nitrogen for sustainable development. Nature 528(7580):51

    Google Scholar 

  • Zuluaga DL, De Paola D, Janni M, Curci PL, Sonnante G (2017) Durum wheat miRNAs in response to nitrogen starvation at the grain filling stage. PLoS One 12(8):e0183253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by research grant to NR and fellowship to NS from the Department of Biotechnology, Govt. of India under the Indo-UK Virtual Nitrogen Centre on Nitrogen Efficiency of Whole cropping Systems (NEWS) BT/IN/UK-VNC/44/NR/2015-16. VM is a recipient of DBT fellowship (BCIL/HRD/DBT-JRF/FLSP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandula Raghuram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mandal, V.K., Sharma, N., Raghuram, N. (2018). Molecular Targets for Improvement of Crop Nitrogen Use Efficiency: Current and Emerging Options. In: Shrawat, A., Zayed, A., Lightfoot, D. (eds) Engineering Nitrogen Utilization in Crop Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-92958-3_5

Download citation

Publish with us

Policies and ethics