Skip to main content

Optical Spectroscopy and Its Applications in Inorganic Materials

  • Chapter
  • First Online:
Book cover Handbook of Materials Characterization

Abstract

Light-matter interaction is a research field under permanent investigation. Such studies have encouraged new research as well as have effectively contributed to the development of new materials for different applications. The optical properties of materials derive from interactions with electromagnetic radiation, and they include absorption, emission, diffraction, scattering, reflection, and refraction. Thus, optical measurements are crucial for the better understanding of such properties due to structural changes in the properties of these materials. Optical measurements enable interpreting the electronic transitions, estimating the band gap values through the absorption coefficient or the Kubelka-Munk function, or even conducting lattice vibration (phonons) studies. It is worth analyzing the collected data in order to obtain light-activated catalysts, as well as to develop optical devices and scintillators, among other technological equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Solé, J. G., Bausá, L. E., & Jaque, D. (2005). An introduction to the optical spectroscopy of inorganic solids. New Jersey: Wiley.

    Book  Google Scholar 

  2. William, J., Callister, D., & Rethwisch, D. G. (2013). Materials science and engineering: An introduction (9th ed.). New York: Wiley.

    Google Scholar 

  3. Housecroft, C. E., & Sharpe, A. G. (2008). Inorganic chemistry (3th ed.). London: Pearson Education.

    Google Scholar 

  4. Fox, M. (2007). Optical properties of solids. New York: Oxford University Press.

    Google Scholar 

  5. Tilley, R. J. D. (2004). Understand solids: The science of materials. New York: Willey.

    Book  Google Scholar 

  6. Grundmann, M. (2010). The physics of semiconductors: An introduction including nanophysics and applications (2th ed.). New York: Springer.

    Book  Google Scholar 

  7. Kitai, A. (2008). Luminescent materials and applications. Chichester: Wiley.

    Book  Google Scholar 

  8. Bergman, L., & McHale, J. L. (2012). Handbook of luminescent semiconductor materials. New York: CCR Press.

    Google Scholar 

  9. Gauglitz, G., & Vo-Dinh, T. (2003). Handbook of spectroscopy. Weinheim: WILEY-VCH.

    Book  Google Scholar 

  10. Barnes, P. Y., Early, E. A., & Parr, A. C. (1998). Spectral reflectance. Washington: NIST PUBLICATIONS.

    Book  Google Scholar 

  11. Torrent, J., & Barrón, V. (2008). Diffuse reflectance spectroscopy. In M.o.S.A.P.M. Methods (Ed.), (pp. 367–385). Madison: Soil Science Society of America.

    Google Scholar 

  12. Wood, B. J., & Strens, R. G. J. (1979). Mineralogical Magazine, 43, 509–518.

    Article  CAS  Google Scholar 

  13. Dzimbeg-Malcic, V., Barbaric-Mikocevic, Z., & Itric, K. (2011). Technical Gazette, 18, 117–124.

    Google Scholar 

  14. Morales, A. E., Mora, E. S., & Pal, U. (2007). Revista Mexicana de Física, 53, 18–22.

    CAS  Google Scholar 

  15. Sardela, M. (2014). Practical materials characterization. New York: Spriger.

    Book  Google Scholar 

  16. Koferstein, R., Jager, L., & Ebbinghaus, S. G. (2013). Solid State Ionics, 249, 1–5.

    Article  Google Scholar 

  17. Mehmood, M. S., Siddiqui, N., Maqbool, S. A., Baluch, M. A., Mukhtar, S. S., & Yasin, T. (2017). Optik, 144, 387–392.

    Article  CAS  Google Scholar 

  18. Eberl, J., & Kisch, H. (2008). Photochemical & Photobiological Sciences, 7, 1400–1406.

    Article  CAS  Google Scholar 

  19. Bellardita, M., Addamo, M., Di Paola, A., Palmisano, L., & Venezia, A. M. (2009). Physical Chemistry Chemical Physics, 11, 4084–4093.

    Article  CAS  Google Scholar 

  20. Khoshhesab, Z. M. (2012). Infrared spectroscopy – materials science, engineering and technology. Croatia: InTech.

    Google Scholar 

  21. Palmer, J. M. (1995). The measurement of transmission, absorption, emission, and reflection. In J. M. Palmer (Ed.), Handbook of optics (p. 25.21). New York: McGraw-Hill Professional.

    Google Scholar 

  22. Toft, J., & Kvalheim, O. M. (1993). Chemometrics and Intelligent Laboratory Systems, 19, 65–73.

    Article  CAS  Google Scholar 

  23. Gottfries, J., Depui, H., Fransson, M., Jongeneelen, M., Josefson, M., Langkilde, F. W., & Witte, D. T. (1996). Journal of Pharmaceutical and Biomedical Analysis, 14, 1495–1503.

    Article  CAS  Google Scholar 

  24. Nasser, H., Ozkol, E., Bek, A., & Turan, R. (2015). Optical Materials Express, 5, 932–942.

    Article  Google Scholar 

  25. Sampaio, P. G. V., & González, M. O. A. (2017). Renewable and Sustainable Energy Reviews, 74, 590–601.

    Article  Google Scholar 

  26. Gong, J. W., Sumathy, K., Qiao, Q. Q., & Zhou, Z. P. (2017). Renewable and Sustainable Energy Reviews, 68, 234–246.

    Article  CAS  Google Scholar 

  27. Snaith, H. J. (2010). Advanced Functional Materials, 20, 13–19.

    Article  CAS  Google Scholar 

  28. Zuo, C. T., Bolink, H. J., Han, H. W., Huang, J. S., Cahen, D., & Ding, L. M. (2016). Advancement of Science, 3, 1500324–1500324.

    Google Scholar 

  29. Alshahrie, A., Juodkazis, S., Al-Ghamdi, A. A., Hafez, M., & Bronstein, L. M. (2017). Optics and Laser Technology, 95, 29–35.

    Article  CAS  Google Scholar 

  30. Conibeer, G. J., & Willoughby, A. (2014). Solar cell materials: Developing technologies. UK: Wiley.

    Book  Google Scholar 

  31. Niv, A., Abrams, Z. R., Gharghi, M., Gladden, C., & Zhang, X. (2012). Applied Physics Letters, 100, 083901.

    Article  Google Scholar 

  32. Polman, A., Knight, M., Garnett, E. C., Ehrler, B., & Sinke, W. C. (2016). Science, 352, 307.

    Article  CAS  Google Scholar 

  33. Liao, W. Q., Zhao, D. W., Yu, Y., Shrestha, N., Ghimire, K., Grice, C. R., Wang, C. L., Xiao, Y. Q., Cimaroli, A. J., Ellingson, R. J., Podraza, N. J., Zhu, K., Xiong, R. G., & Yan, Y. F. (2016). Journal of the American Chemical Society, 138, 12360–12363.

    Article  CAS  Google Scholar 

  34. Zhang, Z. L., Men, B. Q., Liu, Y. F., Gao, H. P., & Mao, Y. L. (2017). Nanoscale Research Letters, 12, 84.

    Google Scholar 

  35. Eperon, G. E., Stranks, S. D., Menelaou, C., Johnston, M. B., Herz, L. M., & Snaith, H. J. (2014). Energy & Environmental Science, 7, 982–988.

    Article  CAS  Google Scholar 

  36. Renz, C. (1921). Helvetica Chimica Acta, 4, 961–968.

    Article  CAS  Google Scholar 

  37. Coronado, J. M., Fresno, F., Hernández-Alonso, M. D., & Portela, R. (2013). Design of advanced photocatalytic materials for energy and environmental applications: Green energy and technology. London: Springer.

    Book  Google Scholar 

  38. Reddy, P. V. L., Kavitha, B., Reddy, P. A. K., & Kim, K. H. (2017). Environmental Research, 154, 296–303.

    Article  Google Scholar 

  39. Fujishima, A., Zhang, X. T., & Tryk, D. A. (2008). Surface Science Reports, 63, 515–582.

    Article  CAS  Google Scholar 

  40. Hernández-Ramírez, A., & Medina-Ramıírez, I. (2015). Photocatalytic semiconductors: Synthesis, characterization, and environmental applications. London: Springer.

    Book  Google Scholar 

  41. Bora, L. V., & Mewada, R. K. (2017). Renewable and Sustainable Energy Reviews, 76, 1393–1421.

    Article  CAS  Google Scholar 

  42. Tong, H., Ouyang, S. X., Bi, Y. P., Umezawa, N., Oshikiri, M., & Ye, J. H. (2012). Advanced Materials, 24, 229–251.

    Article  CAS  Google Scholar 

  43. Abe, R. (2010). Journal of Photochemistry Photobiology C-Photochemistry Reviews, 11, 179–209.

    Article  Google Scholar 

  44. Coronado, J. M., Fresno, F., Hernández-Alonso, M. D., & Portela, R. (2013). Design of advanced photocatalytic materials for energy and environmental applications. London: Springer.

    Book  Google Scholar 

  45. Luevano-Hipolito, E., & Martinez-de la Cruz, A. (2017). Advanced Powder Technology, 28, 1511–1518.

    Article  CAS  Google Scholar 

  46. Shan, Z. C., Wang, Y. M., Ding, H. M., & Huang, F. Q. (2009). Journal of Molecular Catalysis A-Chemical, 302, 54–58.

    Article  CAS  Google Scholar 

  47. Bian, Z. F., Zhu, J., & Li, H. X. (2016). Journal of Photochemistry Photobiology C-Photochemistry Reviews, 28, 72–86.

    Article  CAS  Google Scholar 

  48. Cheng, H. F., Huang, B. B., & Dai, Y. (2014). Nanoscale, 6, 2009–2026.

    Article  CAS  Google Scholar 

  49. Amano, F., Nogami, K., & Ohtani, B. (2012). Catalysis Communications, 20, 12–16.

    Article  CAS  Google Scholar 

  50. Hao, Y. Y., Zhang, L. Y., Zhang, Y., Zhao, L., & Zhang, B. S. (2017). RSC Advances, 7, 26179–26184.

    Article  CAS  Google Scholar 

  51. Ouyang, S. X., & Ye, J. H. (2011). Journal of the American Chemical Society, 133, 7757–7763.

    Article  CAS  Google Scholar 

  52. Geng, Y., Zhang, P., Li, N., Sun, Z., & Alloys, J. (2015). Compounds, 651, 744–748.

    Article  CAS  Google Scholar 

  53. An, H., Du, Y., Wang, T., Wang, C., Hao, W., & Zhang, J. (2008). Rare Metals, 27, 243–250.

    Article  CAS  Google Scholar 

  54. Zhao, Z. Y., & Dai, W. W. (2014). Inorganic Chemistry, 53, 13001–13011.

    Article  CAS  Google Scholar 

  55. Ganose, A. M., Cuff, M., Butler, K. T., Walsh, A., & Scanlon, D. O. (2016). Chemistry of Materials, 28, 1980–1984.

    Article  CAS  Google Scholar 

  56. Saraf, R., Shivakumara, C., Behera, S., Nagabhushana, H., & Dhananjaya, N. (2015). RSC Advances, 5, 4109–4120.

    Article  CAS  Google Scholar 

  57. Liu, Y., Xu, J., Wang, L., Zhang, H., Xu, P., Duan, X., Sun, H., & Wang, S. (2017). Nanomaterials, 7, 64.

    Article  Google Scholar 

  58. Gu, Y.-y., Zhao, L., Yang, M.-y., Xiong, Y.-q., Wu, Z., Zhou, M.-j., Yan, J., & Cent, J. (2017). South University, 24, 754–765.

    Article  CAS  Google Scholar 

  59. Liqiang, J., Yichun, Q., Baiqi, W., Shudan, L., Baojiang, J., Libin, Y., Wei, F., Honggang, F., & Jiazhong, S. (2006). Solar Energy Materials & Solar Cells, 90, 1773–1787.

    Article  Google Scholar 

  60. Yu, J.-G., Yu, H.-G., Cheng, B., Zhao, X.-J., Yu, J. C., Ho, W.-K., & Phys, J. (2003). Chemistry B, 107, 13871–13879.

    Article  CAS  Google Scholar 

  61. Li, F. B., & Li, X. Z. (2002). Applied Catalysis A-General, 228, 15–27.

    Article  CAS  Google Scholar 

  62. Ismail, A. A., & Bahnemann, D. W. (2014). Solar Energy Materials & Solar Cells, 128, 85–101.

    Article  CAS  Google Scholar 

  63. Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q. X., Santori, E. A., & Lewis, N. S. (2010). Chemical Reviews, 110, 6446–6473.

    Article  CAS  Google Scholar 

  64. Fujishima, A., & Honda, K. (1972). Nature, 238, 37-+.

    Article  CAS  Google Scholar 

  65. Yamashita, H., & Li, H. (2016). In H. Yamashita & H. Li (Eds.), Nanostructure science and technology (p. 544). Switzerland: Springer.

    Google Scholar 

  66. Jafari, T., Moharreri, E., Amin, A. S., Miao, R., Song, W. Q., & Suib, S. L. (2016). Molecules, 21, 900.

    Article  Google Scholar 

  67. Noureldine, D., & Takanabe, K. (2016). Catalysis Science & Technology, 6, 7656–7670.

    Article  CAS  Google Scholar 

  68. Tamirat, A. G., Rick, J., Dubale, A. A., Su, W. N., & Hwang, B. J. (2016). Nanoscale Horizons, 1, 243–267.

    Article  CAS  Google Scholar 

  69. Maeda, K. (2013). ACS Catalysis, 3, 1486–1503.

    Article  CAS  Google Scholar 

  70. Ong, W. J., Tan, L. L., Ng, Y. H., Yong, S. T., & Chai, S. P. (2016). Chemical Reviews, 116, 7159–7329.

    Article  CAS  Google Scholar 

  71. Zhu, Z., Chen, J. Y., Su, K. Y., Wu, R. J., & Taiwan Inst, J. (2016). Chemical Engineer, 60, 222–228.

    CAS  Google Scholar 

  72. Harris, D. C. (2010). Quantitative chemistry analysis (8th ed.). New York: W. H. Freeman.

    Google Scholar 

  73. Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (2014). Fundaments of analytical chemistry (9th ed.). Australia: BROOKS/COLE, Cengage Learning.

    Google Scholar 

  74. Willard, H. H., Merritt, L. L., & Dean, J. A. (1988). Instrumental methods of analysis (6th ed.). New York: Wadsworth Publishing Company.

    Google Scholar 

  75. Nath, U. U. (2009). Biophysical chemistry: Principle and techniques. Mumbai: Himalaya Publishing House.

    Google Scholar 

Download references

Acknowledgments

We are grateful to the Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão (FAPEMA) for the substantial financial support in the research projects Proc. INFRA-03965/15 and Proc. UNIVERSAL-00656/15.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Almeida, M.A.P., Maciel, A.P. (2018). Optical Spectroscopy and Its Applications in Inorganic Materials. In: Sharma, S. (eds) Handbook of Materials Characterization. Springer, Cham. https://doi.org/10.1007/978-3-319-92955-2_8

Download citation

Publish with us

Policies and ethics