Skip to main content

Materials Characterization Using Scanning Tunneling Microscopy: From Fundamentals to Advanced Applications

  • Chapter
  • First Online:

Abstract

Like all other imaging techniques, scanning tunneling microscopy (STM) is an ingenious approach for obtaining images with sufficiently high resolution. On the other hand, STM is beneficial for the deposition of metal over a substrate by manipulation of single atoms/molecules. This technique is greatly helpful for the nanoscience domain, providing the facility to study the property of materials at the atomic scale. The present topic covers most of the important aspects of the operation of STM, starting from theoretical background to instrumentation. The use of STM for topographical and spectroscopic imaging is firmly discussed. The potential application of STM in the technological field, surface science, solid-state physics, biology, and organic chemistry is manifested with concrete evidence, with which we expect to provide a complete idea of STM characterization technique to the readers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Binning, G., Rohrer, H., Gerber, C., & Weibel, E. (1982). Surface studies by scanning tunneling microscopy. Physical Review Letters, 49, 57.

    Article  CAS  Google Scholar 

  2. Gasiorowicz, S. (2003). Quantum physics. New York: Wiley.

    Google Scholar 

  3. Sun, X. (2010). Engineering supramolecular architectures on insulating and metal surfaces studied by scanning tunneling microscopy. Doctor of Philosophy. Groningen.

    Google Scholar 

  4. Tersoff, J., & Hamann, D. R. (1985). Theory of the scanning tunneling microscope. Physical Review B, 31(2), 805.

    Article  CAS  Google Scholar 

  5. Ekvall, I., Wahlstrom, E., Claesson, D., Olin, H., & Olsson, E. (1999). Preparation and characterization of electrochemically etched W tips for STM. Science and Technology, 10, 11–18.

    CAS  Google Scholar 

  6. Biegelsen, D. K., Ponce, F. A., & Tramontana, J. C. (1987). Ion mined tips for scanning tunneling microscopy. Applied Physics Letters, 50, 696.

    Article  CAS  Google Scholar 

  7. Valencia, V. A., Thaker, A. A., Derouin, J., Valencia, D. N., Farber, R. G., Gebel, D. A., & Killelea, D. R. (2014). Preparation of scanning tunneling microscopy tips using pulsed alternating current etching. Journal of Vacuum Science and Technology A, 33, 023001.

    Article  CAS  Google Scholar 

  8. Albrektsen, O., Salemink, H. W. M., Morch, K. A., & Tholen, A. R. (1994). Reliable tip preparation for high-resolution scanning tunneling microscopy. Journal of Vacuum Science and Technology B, 12, 3187.

    Article  CAS  Google Scholar 

  9. Leng, Y. (2008). Materials characterization: Introduction to microscopic and spectroscopic methods. Singapore: Wiley.

    Book  Google Scholar 

  10. Oura, K., Lifshits, V. G., Saranin, A. A., Zotov, A. V., & Katayama, M. (2003). Surface science: An introduction. Berlin: Springer.

    Book  Google Scholar 

  11. Ziegler, J. G., & Nichols, N. B. (1993). Optimum settings for automatic controllers. The Journal of Dynamic Systems, Measurement, and Control, 115, 220–222.

    Article  Google Scholar 

  12. Sarid, D., Henson, T., Bell, L. S., & Sandroff, C. J. (1988). Scanning tunneling microscopy of semiconductor clusters. Journal of Vacuum Science & Technology, A: Vacuum, Surfaces, and Films, 6, 424.

    Article  CAS  Google Scholar 

  13. Sand, D., McGinnis, B. P., & Henson, D. (1988). Four-wave mixing and scanning tunneling microscopy of semiconductor clusters. Proc. SPIE 0881, Optical Computing and Nonlinear Materials 114.

    Google Scholar 

  14. Sarid, D., Henson, T. D., Armstrong, N. R., & Bell, L. S. (1988). Probing of basal planes of MoS2 by scanning tunneling microscopy. Applied Physics Letters, 52, 2252.

    Article  CAS  Google Scholar 

  15. Becker, R. S., Golovchenko, J. A., & Swartzentruber, B. S. (1985). Electron interferometry at crystal surfaces. Physical Review Letters, 55, 987.

    Article  CAS  Google Scholar 

  16. Binnig, G., Frank, K. H., Fuchs, H., Garcia, N., Reihl, B., Rohrer, H., Salvan, F., & Williams, A. R. (1985). Tunneling spectroscopy and inverse photoemission: Image and field states. Physical Review Letters, 55, 991–994.

    Article  CAS  Google Scholar 

  17. Tromp, R. M. (1989). Spectroscopy with the scanning tunnelling microscope: A critical review. Journal of Physics: Condensed Matter, 1, 10211–10228.

    CAS  Google Scholar 

  18. Stroscio, J. A., Feenstra, R. M., Newns, D. M., & Fein, A. P. (1988). Voltage-dependent scanning tunneling microscopy imaging of semiconductor surfaces. Journal of Vacuum Science & Technology, A: Vacuum, Surfaces, and Films, 6, 499.

    Article  CAS  Google Scholar 

  19. Natterer, F. D., Ha, J., Baek, H., Zhang, D., Cullen, W. G., Zhitenev, N. B., Kuk, Y., & Stroscio, J. A. (2016). Scanning tunneling spectroscopy of proximity superconductivity in epitaxial multilayer grapheme. Physical Review B, 93, 045406.

    Article  CAS  Google Scholar 

  20. Sakurai, T., & Wille, L. (Eds.). (2000). Advances in scanning probe microscopy. Berlin: Springer.

    Google Scholar 

  21. Payne, M. C., & Inkson, J. C. (1985). Measurement of work functions by tunneling and the effect of the image potential. Surface Science, 159, 485–495.

    Article  CAS  Google Scholar 

  22. Simmons, J. G. (1963). Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. Journal of Applied Physics, 34, 1793.

    Article  Google Scholar 

  23. Joshi, S., Ecija, D., Koitz, R., Iannuzzi, M., Seitsonen, A. P., Hutter, J., Sachdev, H., Vijayaraghavan, S., Bischoff, F., Seufert, K., Barth, J. V., & Auwärter, W. (2012). Boron nitride on Cu(111): An electronically corrugated monolayer. Nano Letters, 12, 5821–5828.

    Article  CAS  Google Scholar 

  24. Vitali, L., Levita, G., Ohmann, R., Comisso, A., De Vita, A., & Kern, K. (2010). Portrait of the potential barrier at metal–organic nanocontacts. Nature Materials, 9, 320–323.

    Article  CAS  Google Scholar 

  25. Muralt, P., & Pohl, D. W. (1986). Scanning tunneling potentiometry. Applied Physics Letters, 48, 514.

    Article  CAS  Google Scholar 

  26. Muralt, P., Meier, H., Pohl, D. W., & Salemink, H. W. M. (1987). Scanning tunneling microscopy and potentiometry on a semiconductor heterojunction. Applied Physics Letters, 50, 1352.

    Article  CAS  Google Scholar 

  27. Baddorf, A. P. (2007). Scanning tunneling potentiometry: The power of STM applied to electrical transport. In S. Kalinin & A. Gruverman (Eds.), Scanning probe microscopy (pp. 11–30). New York: Springer.

    Chapter  Google Scholar 

  28. Meyer, E., Hug, H. J., & Bennewitz, R. (2004). Scanning probe microscopy: The lab on a tip. New York: Springer.

    Book  Google Scholar 

  29. Fink, H.-W. (1986). Mono-atomic tips for scanning tunneling microscopy. IBM Journal of Research and Development, 30, 460–465.

    Article  CAS  Google Scholar 

  30. Hofer, W. A., & Redinger, J. (2000). Scanning tunneling microscopy of binary alloys: First principles calculation of the current for PtX (100) surfaces. Surface Science, 447, 51–61.

    Article  CAS  Google Scholar 

  31. Lucier, A-S. (2004). Preparation and characterization of tungsten tips suitable for molecular electronics studies. Master’s thesis. McGill University.

    Google Scholar 

  32. Melmed, A. J. (1991). The art and science and other aspects of making sharp tips. Journal of Vacuum Science and Technology B, 9, 601.

    Article  CAS  Google Scholar 

  33. Volcke, C. (2010). Chemical modification of scanning tunneling microscopy tips for identification of functional groups in self-assembled monolayers. In A. Mendez-Vilas & J. Diaz (Eds.), Microscopy: Science, technology, applications and education (pp. 1293–1301). Spain: Formatex.

    Google Scholar 

  34. Hahn, J. R., & Ho, W. (2001). Single molecule imaging and vibrational spectroscopy with a chemically modified tip of a scanning tunneling microscope. Physical Review Letters, 87, 196102.

    Article  CAS  Google Scholar 

  35. Kuk, Y., & Silverman, P. J. (1989). Scanning tunneling microscope instrumentation. The Review of Scientific Instruments, 60, 165.

    Article  CAS  Google Scholar 

  36. Hofer, W. A., Fisher, A. J., Wolkow, R. A., & Grutter, P. (2001). Surface relaxations, current enhancements, and absolute distances in high resolution scanning tunneling microscopy. Physical Review Letters, 87, 236104.

    Article  CAS  Google Scholar 

  37. Kresse, G., & Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Physical Review B, 47, 558.

    Article  CAS  Google Scholar 

  38. Kohn, W., Becke, A. D., & Parr, R. G. (1996). Density functional theory of electronic structure. The Journal of Physical Chemistry, 100, 12974–12980.

    Article  CAS  Google Scholar 

  39. Turchi, P. E. A., Gonis, A., & Colombo, L. (Eds.). (1998). Tight-binding approach to computational materials science. Pennsylvania: Materials Research Society.

    Google Scholar 

  40. Ness, H., & Fisher, A. J. (1997). Influence of the tip-induced electric field on the STM contrast of chemisorbed C2H4 on the Si(001) surface. Physical Review B, 55, 10081–10093.

    Article  CAS  Google Scholar 

  41. Hofer, W. A. (2003). Challenges and errors: Interpreting high resolution images in scanning tunneling microscopy. Progress in Surface Science, 71, 147–183.

    Article  CAS  Google Scholar 

  42. Sacks, W., Gauthier, S., Rousset, S., Klein, J., & Esrick, M. A. (1987). Surface topography in scanning tunneling microscopy: A free-electron model. Physical Review B, 36, 961.

    Article  CAS  Google Scholar 

  43. Heinze, S., Blugel, S., Pascal, R., Bode, M., & Wiesendanger, R. (1998). Prediction of bias-voltage-dependent corrugation reversal for STM images of bcc (110) surfaces: W(110), Ta(110), and Fe(110). Physical Review B, 58, 16432.

    Article  CAS  Google Scholar 

  44. Rutter, G. M., Guisinger, N. P., Crain, J. N., Jarvis, E. A. A., Stiles, M. D., Li, T., First, P. N., & Stroscio, J. A. (2007). Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling microscopy. Physical Review B, 76, 235416.

    Article  CAS  Google Scholar 

  45. Chen, C. J. (2008). Introduction to scanning tunneling microscopy. New York: Oxford University Press.

    Google Scholar 

  46. Takahashi, Y., Miyamachi, T., Ienaga, I., Kawamura, N., Ernst, A., & Komori, F. (2016). Orbital selectivity in scanning tunneling microscopy: Distance-dependent tunneling process observed in iron nitride. Physical Review Letters, 116, 056802.

    Article  CAS  Google Scholar 

  47. Prüser, H. (2015). Scanning tunneling spectroscopy of magnetic bulk impurities: From a single kondo atom towards a coupled system. Switzerland: Springer International Publishing.

    Book  Google Scholar 

  48. Selloni, A., Carnevali, P., Tosatti, E., & Chen, C. D. (1986). Voltage-dependent scanning-tunneling microscopy of a crystal surface: Graphite. Physical Review B, 34, 7406.

    Article  CAS  Google Scholar 

  49. Hamers, R. J., Tromp, R. M., & Demuth, J. E. (1986). Surface electronic structure of Si(111)-(7 x 7) resolved in real space. Physical Review Letters, 56, 1972.

    Article  CAS  Google Scholar 

  50. Deniz, O., Sanchez-Sanchez, C., Dumslaff, T., Feng, X., Narita, A., Mullen, K., Kharche, N., Meunier, V., Fasel, R., & Ruffieux, P. (2017). Revealing the electronic structure of silicon intercalated armchair graphene nanoribbons by scanning tunneling spectroscopy. Nano Letters, 17, 2197–2203.

    Article  CAS  Google Scholar 

  51. Braun, K.-F., & Hla, S.-W. (2005). Probing the conformation of physisorbed molecules at the atomic scale using STM manipulation. Nano Letters, 5, 73–76.

    Article  CAS  Google Scholar 

  52. Crommie, M. F., Lutz, C. P., & Eigler, D. M. (1993). Confinement of electrons to quantum corrals on a metal surface. Science, 262, 218.

    Article  CAS  Google Scholar 

  53. Hla, S.-W., Braun, K.-F., Wassermann, B., & Rieder, K.-H. (2004). Controlled low-temperature molecular manipulation of sexiphenyl molecules on Ag(111) using scanning tunneling microscopy. Physical Review Letters, 93, 208302.

    Article  CAS  Google Scholar 

  54. Heinrich, J. A., Gupta, J. A., Lutz, C. P., & Eigler, D. M. (2004). Singleatom spin-flip spectroscopy. Science, 306, 466.

    Article  CAS  Google Scholar 

  55. Jamneala, T., Madhavan, V., & Crommie, M. F. (2001). Kondo response of a single antiferromagnetic chromium trimer. Physical Review Letters, 87, 256804.

    Article  CAS  Google Scholar 

  56. Hla, S. W., Bartels, L., Meyer, G., & Rieder, K.-H. (2000). Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: Towards single molecule engineering. Physical Review Letters, 85, 2777.

    Article  CAS  Google Scholar 

  57. Komeda, T., Kim, Y., Fujita, Y., Sainoo, Y., & Kawai, M. (2004). Local chemical reaction of benzene on Cu(110) via STM-induced excitation. The Journal of Chemical Physics, 120, 5347.

    Article  CAS  Google Scholar 

  58. Lauhon, L. J., & Ho, W. (2000). Control and characterization of a multistep unimolecular reaction. Physical Review Letters, 84, 1527.

    Article  CAS  Google Scholar 

  59. Corcoran, S. G., Colton, R. J., Lilleodden, E. T., & Gerberich, W. W. (1997). Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals. Physical Review B, 55, R16057.

    Article  CAS  Google Scholar 

  60. de la Fuente, O. R., Zimmerman, J. A., González, M. A., de la Figuera, J., Hamilton, J. C., Pai, W. W., & Rojo, J. M. Dislocation emission around nanoindentations on a (001) fcc metal surface studied by scanning tunneling microscopy and atomistic simulations. Physical Review Letters, 88, 036101.

    Google Scholar 

  61. Kondo, Y., & Takayanagi, K. (2000). Synthesis and characterization of helical multi-shell gold nanowires. Science, 289, 606.

    Article  CAS  Google Scholar 

  62. Tosatti, E., & Prestipino, S. (2000). Weird gold nanowires. Science, 289, 561.

    Article  CAS  Google Scholar 

  63. Hla, S.-W., Braun, K.-F., Iancu, V., & Deshpande, A. (2004). Single atom extraction by scanning tunneling microscope tip-crash and nanoscale surface engineering. Nano Letters, 4, 1997.

    Article  CAS  Google Scholar 

  64. Eigler, D. M., & Schweizer, E. K. (1990). Positioning single atoms with a scanning tunneling microscope. Nature, 344, 524.

    Article  CAS  Google Scholar 

  65. Bartels, L., Meyer, G., & Rieder, K.-H. (1997). Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip. Physical Review Letters, 79, 697.

    Article  CAS  Google Scholar 

  66. Lyo, I.-W., & Avouris, P. (1991). Field-induced nanometer- to atomic-scale manipulation of silicon surfaces with the STM. Science, 253, 173.

    Article  CAS  Google Scholar 

  67. Meyer, G., Zöphel, S., & Rieder, K.-H. (1996). Manipulation of atoms and molecules with a low temperature scanning tunneling microscope. Applied Physics A: Materials Science & Processing, 63, 557.

    Article  CAS  Google Scholar 

  68. Tilinin, I. S., Van Hove, M. A., & Salmeron, M. (1998). Tip-surface transfer of adatoms in AFM/STM: Effect of quantum oscillations. Applied Surface Science, 676, 130–132.

    Google Scholar 

  69. Colton, R. J., Baker, S. M., Driscoll, R. J., Youngquist, M. G., Baldeschwieler, J. D., & Kaiser, W. J. (1988). Imaging graphite in air by scanning tunneling microscopy: Role of the tip. Journal of Vacuum Science and Technology A, 6(2), 349.

    Article  CAS  Google Scholar 

  70. Wong, H. S., Durkan, C., & Chandrasekhar, N. (2009). Tailoring the local interaction between graphene layers in graphite at the atomic scale and above using scanning tunneling microscopy. ACS Nano, 3, 3455–3462.

    Article  CAS  Google Scholar 

  71. Stawasz, M. E., Sampson, D. L., & Parkinson, B. A. (2000). Scanning tunneling microscopy investigation of the ordered structures of dialkylamino hydroxylated squaraines adsorbed on highly oriented pyrolytic graphite. Langmuir, 16, 2326–2342.

    Article  CAS  Google Scholar 

  72. Paredes, J. I., Martinez-Alonso, A., & Tascon, J. M. D. (2007). Multiscale imaging and tip-scratch studies reveal insight into the plasma oxidation of graphite. Langmuir, 23, 8932–8943.

    Article  CAS  Google Scholar 

  73. Gopakumar, T. G., Lackinger, M., Hackert, M., Muller, F., & Hietschold, M. (2004). Adsorption of palladium phthalocyanine on graphite: STM and LEED study. The Journal of Physical Chemistry. B, 108, 7839–7843.

    Article  CAS  Google Scholar 

  74. Linares, M., Scifo, L., Demadrille, R., Brocorens, P., Beljonne, D., Lazzaroni, R., & Grevin, B. (2008). Two-dimensional self-assemblies of thiophene-fluorenone conjugated oligomers on graphite: A joint STM and molecular modeling study. Journal of Physical Chemistry C, 112, 6850–6859.

    Article  CAS  Google Scholar 

  75. Chilukuri, B., McDougald, R. N., Jr., Ghimire, M. M., Nesterov, V. N., Mazur, U., Omary, M. A., & Hipps, K. W. (2015). Polymorphic, porous, and host-guest nanostructures directed by monolayer-substrate interactions: Epitaxial self-assembly study of cyclic trinuclear Au(I) complexes on HOPG at the solution−solid interface. Journal of Physical Chemistry C, 119, 24844–24858.

    Article  CAS  Google Scholar 

  76. Lipari, N. O. (1987). STM applications for semiconductor materials and devices. Surface Science, 181, 285–294.

    Article  Google Scholar 

  77. Uosaki, K., & Koinuma, M. (1992). Application of scanning tunnelling microscopy to semiconductod electrolyte interfaces. Faraday Discussions, 94, 361–368.

    Article  CAS  Google Scholar 

  78. Petta, J. R. (2017). Atom-by-atom construction of a quantum device., 11, 2382–2386.

    Google Scholar 

  79. Volders, C., Monazami, E., Ramalingam, G., & Reinke, P. (2016). Alternative route to silicene synthesis via surface reconstruction on h-MoSi2 crystallites. Nano Letters, 17, 299–307.

    Article  CAS  Google Scholar 

  80. Saedi, A., Poelsema, B., & Zandvliet, H. J. W. (2010). Study of dynamic processes on semiconductor surfaces using time-resolved scanning tunneling microscopy. Journal of Physics: Condensed Matter, 22, 264007.

    Google Scholar 

  81. Li, Z., Li, B., Yang, J., & Hou, J. G. (2010). Single-molecule chemistry of metal phthalocyanine on noble metal surfaces. Accounts of Chemical Research, 43, 954–962.

    Article  CAS  Google Scholar 

  82. Miao, P., Robinson, A. W., & Palmer, R. E. (2000). Structural properties of self-organized organo-silicon macromolecular films investigated by scanning tunneling microscopy and X-ray diffraction. The Journal of Physical Chemistry. B, 104, 1285–1291.

    Article  CAS  Google Scholar 

  83. Liljeroth, P., Swart, I., Paavilainen, S., Repp, J., & Meyer, G. (2010). Single-molecule synthesis and characterization of metal-ligand complexes by low-temperature STM. Nano Letters, 10, 2475–2479.

    Article  CAS  Google Scholar 

  84. Lin, S.-Y., Chen I-W, P., Chen, C.-H., Hsieh, M.-H., Yeh, C.-Y., Lin, T.-W., Chen, Y.-H. G., & Peng, S.-M. (2004). Effect of metal-metal interactions on electron transfer: An STM study of one-dimensional metal string complexes. The Journal of Physical Chemistry B, 108, 959–964.

    Article  CAS  Google Scholar 

  85. Li, J., Gottardi, S., Solianyk, L., Moreno-Lopez, J. C., & Stohr, M. (2016). 1,3,5-benzenetribenzoic acid on Cu(111) and graphene/Cu(111): A comparative STM study. Journal of Physical Chemistry C, 120, 18093–18098.

    Article  CAS  Google Scholar 

  86. Han, X., Hu, J., Liu, H., & Hu, Y. (2006). SEBS aggregate patterning at a surface studied by atomic force microscopy. Langmuir, 22, 3428–3433.

    Article  CAS  Google Scholar 

  87. Dabirian, R., Zdravkova, A. N., Liljeroth, P., van Walree, C. A., & Jenneskens, L. W. (2005). Mixed self-assembled monolayers of semirigid tetrahydro-4H-thiopyran end-capped oligo (cyclohexylidenes). Langmuir, 21, 10497–10503.

    Article  CAS  Google Scholar 

  88. Baubet, B., Girleanu, M., Gay, A.-S., Taleb, A.-L., Moreaud, M., Wahl, F. O., Delattre, V., Devers, E., Hugon, A., Ersen, O., Afanasiev, P., & Raybaud, P. (2016). Quantitative two-dimensional (2D) morphology−selectivity relationship of CoMoS nanolayers: A combined high-resolution high-angle annular dark field scanning transmission electron microscopy (HR HAADF-STEM) and density functional theory (DFT) study. ACS Catalysis, 6, 1081–1092.

    Article  CAS  Google Scholar 

  89. van de Leemput, L. E. C., & Kempen, H. V. (1992). Scanning tunnelling microscopy. Report on Pmg Physics, 55, 1165–1240.

    Article  Google Scholar 

  90. Sumi, H. (1998). V-I characteristics of STM processes as a probe detecting vibronic interactions at a redox state in large molecular adsorbates such as electron-transfer metalloproteins. The Journal of Physical Chemistry B, 102, 1833–1844.

    Article  CAS  Google Scholar 

  91. Mayne, A. J., Avery, A. R., Knall, J., Jones, T. S., GAD, B., & Weinberg, W. H. (1993). An STM study of the chemisorption of C,H, on Si(OO1)(2x 1). Surface Science, 284, 247–256.

    Article  CAS  Google Scholar 

  92. Avow-is, P., Lyo, I.-W., & Molinas-Mata, P. (1995). STM studies of the interaction of surface state electrons on metals with steps and adsorbates. Chemical Physics Letters, 240, 423–428.

    Article  Google Scholar 

  93. Yang, J., Nacci, C., Martınez-Blanco, J., Kanisawa, K., & Folsch, S. (2012). Vertical manipulation of native adatoms on the InAs(111)A surface. Journal of Physics: Condensed Matter, 24, 354008.

    CAS  Google Scholar 

  94. Hong, S., & Rahman, T. S. (2008). Adsorbate induced changes in surface stress and phonon dispersion curves of chemisorbed systems. Journal of Physics: Condensed Matter, 20, 224005.

    Google Scholar 

  95. Kiejna, A., & Pabisiak, T. (2012). Surface properties of clean and Au or Pd covered hematite (α-Fe2O3) (0001).

    Google Scholar 

  96. Chen, Q., Liu, J., Zhou, X., Shang, J., Zhang, Y., Shao, X., Wang, Y., Li, J., Chen, W., Xu, G., & Wu, K. (2015). Unveiling structural evolution of CO adsorption on Ru(0001) with high-resolution STM. Journal of Physical Chemistry C, 119, 8626–8633.

    Article  CAS  Google Scholar 

  97. Majzik, Z., Drevniok, B., Kaminski, W., Ondracek, M., AB, M. L., & Jelınek, P. (2013). Room temperature discrimination of adsorbed molecules and attachment sites on the Si(111)-7×7 surface using a q-plus sensor. ACS Nano, 7, 2686–2692.

    Article  CAS  Google Scholar 

  98. Coleman, R. V., Drake, B., Giambattista, B., Johnson, A., Hansma, P. K., McNairy, W. W., & Slough, G. (1988). Applications of scanning tunneling microscopy to the study of charge density waves. Physica Scripta, 38, 235–243.

    Article  CAS  Google Scholar 

  99. Tcbougreefff, A. L., & Hoffmann, R. (1992). Charge and spin density waves in the electronic structure of graphlte. Application to analysis of STM images. The Journal of Physical Chemistry, 96, 8993–8998.

    Article  Google Scholar 

  100. Tomic, A., Rak, Z., Veazey, J. P., Mahanti, S. D., & Tessmer, S. H. (2009). Scanning tunneling microscopy study of the CeTe3 charge density wave. Physical Review B, 79, 085422.

    Article  CAS  Google Scholar 

  101. Sacks, W., Roditchev, D., & Klein, J. (1998). Voltage-dependent STM image of a charge density wave. Physical Review B, 57, 1920.

    Article  Google Scholar 

  102. Brun, C., Wang, Z.-Z., Monceau, P., & Brazovskii, S. (2010). Surface charge density wave phase transition in NbSe3. Physical Review Letters, 104, 256403.

    Article  CAS  Google Scholar 

  103. Fan, Q., Zhang, W. H., Liu, X., Yan, Y. J., Ren, M. Q., Xia, M., Chen, H. Y., Xu, D. F., Ye, Z. R., Jiao, W. H., & Cao, G. H. (2015). Scanning tunneling microscopy study of superconductivity, magnetic vortices, and possible charge-density wave in Ta4Pd3Te16. Physical Review B, 91, 104506.

    Article  CAS  Google Scholar 

  104. Fischer, O., Kugler, M., Maggio-Aprile, I., & Berthod, C. (2007). Scanning tunneling spectroscopy of high-temperature superconductors. Reviews of Modern Physics, 79, 353.

    Article  CAS  Google Scholar 

  105. Lee, J., Slezak, J. A., & Davis, J. C. (2005). Spectroscopic imaging STM studies of high-TC superconductivity. Journal of Physics and Chemistry of Solids, 66, 1370–1375.

    Article  CAS  Google Scholar 

  106. Rodrigo, J. G., Suderow, H., & Vieira, S. (2004). On the use of STM superconducting tips at very low temperatures. https://doi.org/10.1140/epjb/e2004-00273-y.

    Article  CAS  Google Scholar 

  107. Zou, Q., Wu, Z., Fu, M., Zhang, C., Rajput, S., Wu, Y., Li, L., Parker, D. S., Kang, J., Sefat, A. S., & Gai, Z. (2017). Effect of surface morphology and magnetic impurities on the electronic structure in cobalt-doped BaFe2As2 superconductors. Nano Letters, 17, 1642–1647.

    Article  CAS  Google Scholar 

  108. Wise, W. D., Chatterjee, K., Boyer, M. C., Kondo, T., Takeuchi, T., Ikuta, H., Xu, Z., Wen, J., Gu, G. D., Wang, Y., & Hudson, E. W. (2009). Imaging nanoscale Fermi surface variations in an inhomogeneous superconductor. Nature Physics, 5, 213–216 2009.

    Article  CAS  Google Scholar 

  109. Zeljkovic, I., & Hoffman, J. E. (2013). Interplay of chemical disorder and electronic inhomogeneity in unconventional superconductors. Physical Chemistry, 15, 13462–13478.

    CAS  Google Scholar 

  110. Wang, H., Lee, J., Dreyer, M., & Barker, B. I. (2009). A scanning tunneling microscopy study of a new superstructure around defects created by tip–sample interaction on 2H-NbSe2. Journal of Physics: Condensed Matter, 21, 265005.

    Google Scholar 

  111. Liu, N., Lyeo, H. K., Shih, C. K., Oshima, M., Mano, T., & Koguchi, N. (2002). Cross-sectional scanning tunneling microscopy study of InGaAs quantum dots on GaAs(001) grown by heterogeneous droplet epitaxy. Applied Physics Letters, 80, 4345.

    Article  CAS  Google Scholar 

  112. Altfeder, I., Voevodin, A. A., Check, M. H., Eichfeld, S. M., Robinson, J. A., & Balatsky, A. V. (2017). Scientific Reports, 7, 43214.

    Article  CAS  Google Scholar 

  113. Kim, H. W., Ko, W., Ku, J. Y., Jeon, I., Kim, D., Kwon, H., Oh, Y., Ryu, S., Kuk, Y., Hwang, S. W., & Suh, H. (2015). Nanoscale control of phonon excitations in graphene. Nature Communications, 6, 7528.

    Article  CAS  Google Scholar 

  114. Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G., & Blügel, S. (2001). Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Physical Review Letters, n86, 4132.

    Article  CAS  Google Scholar 

  115. Wulfhekela, W., & Kirschner, J. (1999). Spin-polarized scanning tunneling microscopy on ferromagnets. Applied Physics Letters, 75, 1944.

    Article  Google Scholar 

  116. Kleiber, M., Bode, M., Ravlic, R., & Wiesendanger, R. (2000). Topology-induced spin frustrations at the Cr(001) surface studied by spin-polarized scanning tunneling spectroscopy. Physical Review Letters, 85, 4606.

    Article  CAS  Google Scholar 

  117. Bode, M., Getzlaff, M., & Wiesendanger, R. (1998). Spin-polarized vacuum tunneling into the exchange-split surface state of Gd(0001). Physical Review Letters, 81, 4256.

    Article  CAS  Google Scholar 

  118. Eltschka, M., Jack, B., Assig, M., Kondrashov, O. V., Skvortsov, M. A., Etzkorn, M., Ast, C. R., & Kern, K. (2014). Probing absolute spin polarization at the nanoscale. Nano Letters, 14, 7171–7174.

    Article  CAS  Google Scholar 

  119. Dorig, U., Zoger, O., & Pohl, D. W. (1988). Force sensing in scanning tunnelling microscopy: Observation of adhesion forces on clean metal surfaces. Journal of Microscopy, 152, 259–267.

    Article  Google Scholar 

  120. Manassen, Y., Ter-Ovanesyan, E., Shachal, D., & Richter, S. (1993). Electron spin resonance-scanning tunneling microscopy experiments on thermally oxidized Si(111). Physical Review B, 48, 4887.

    Article  CAS  Google Scholar 

  121. Zhdan, P. A. (2002). Nanoscale surface characterization of conducting and non-conducting materials with STM and contact SFM: Some problems and solutions. Surface and Interface Analysis, 33, 879–893.

    Article  CAS  Google Scholar 

  122. Guckenberger, R., Kosslinger, C., Gatz, R., Breu, H., Levai, N., & Baumeister, W. (1988). A scanning tunneling microscope (STM) for biological applications: Design and performance. Ultramicroscopy, 25, 111–122.

    Article  CAS  Google Scholar 

  123. Wilson, R. J., Johnson, K. E., Chambliss, D. D., & Melior, B. (1993). Scanning tunneling microscopy of biological molecules on Pt(ll1): From 100 to 5 × l06 Da. Langmuir, 9, 3478–3490.

    Article  CAS  Google Scholar 

  124. Tao, N. J., & Shi, Z. (1994). Monolayer guanine and adenine on graphite in NaCl solution: A comparative STM and AFM study. The Journal of Physical Chemistry, 98, 1464–1471.

    Article  CAS  Google Scholar 

  125. Smerieri, M., Vattuone, L., Costa, D., Tielens, F., & Savio, L. (2010). Self-assembly of (S)-glutamic acid on Ag(100): A combined LT-STM and Ab initio investigation. Langmuir, 26(10), 7208–7215.

    Article  CAS  Google Scholar 

  126. Tao, N. J., Li, C. Z., & He, H. X. (2000). Scanning tunneling microscopy applications in electrochemistry -beyond imaging. Journal of Electroanalytical Chemistry, 492, 81–93.

    Article  CAS  Google Scholar 

  127. Lay, M. D., Sorenson, T. A., & Stickney, J. L. (2003). High-resolution electrochemical scanning tunneling microscopy (EC-STM) flow-cell studies. The Journal of Physical Chemistry B, 107, 10598–10602.

    Article  CAS  Google Scholar 

  128. Kuo, Y., Liao, W., & Yau, S. L. (2014). Effects of anions on the electrodeposition of cobalt on Pt(111) electrode. Langmuir, 30, 13890–13897.

    Article  CAS  Google Scholar 

  129. Yang, Y.-C., Lee, Y.-L., Ou Yang, L.-Y., & Yau, S.-L. (2006). In situ scanning tunneling microscopy of 1,6-hexanedithiol, 1,9-nonanedithiol, 1,2-benzenedithiol, and 1,3-benzenedithiol adsorbed on Pt(111) electrodes. Langmuir, 22, 5189–5195.

    Article  CAS  Google Scholar 

  130. Grubb, M., Wackerbarth, H., Jesper, W., & Jens, U. (2007). Direct imaging of Hexaamine-ruthenium(III) in domain boundaries in monolayers of single-stranded DNA. Langmuir, 23, 1410–1413.

    Article  CAS  Google Scholar 

  131. Bhusan, B., Israelachvili, J. N., & Lndman, U. (1995). Nanotribiology: Friction, wear and lubrication at the atomic scale. Nature, 374, 607.

    Article  Google Scholar 

  132. Ding, Y. H., Ren, H.-M., Chang, F.-H., Zhang, P., & Jiang, Y. (2013). Intrinsic structure and friction properties of graphene and graphene oxide nanosheets studied by scanning probe microscopy. Bulletin of Materials Science, 36, 1073–1077.

    Article  CAS  Google Scholar 

  133. Jaklevic, R. C., & Elie, L. (1998). Scanning-tunneling-microscope observation of surface diffusion on an atomic scale: Au on Au(111). Physical Review Letters, 60, 120.

    Article  Google Scholar 

  134. Packard, W. E., Liang, Y., Dai, N., Dow, J. D., Nicolides, R., Jaklevic, R. C., & Kaise, W. J. (1988). Nano-machining of gold and semiconductor surfaces. Joumal of Microscopy, 152, 715–725.

    Article  CAS  Google Scholar 

  135. Williams, P. M., Cheema, M. S., Davies, M. C., Jackson, D. E., & Tendler, S. J. B. (1994). Biological applications of scanning tunneling microscopy. In C. Jones, B. Mulloy, & A. H. Thomas (Eds.), Microscopy, optical spectroscopy, and macroscopic techniques (pp. 25–37). Totowa: Humana Press.

    Google Scholar 

  136. Stegemann, B., Bernhardt, T. M., Kaiser, B., & Rademann, K. (2002). STM investigation of surface alloy formation and thin film growth by Sb4 deposition on Au (111). Surface Science, 511, 153–162.

    Article  CAS  Google Scholar 

  137. Biegelsen, D. K., Bringans, R. D., Northrup, J. E., & Swartz, L.-E. (1990). Reconstructions of GaAs(111) surfaces observed by scanning tunneling microscopy. Physical Review Letters, 65.

    Article  CAS  Google Scholar 

  138. Xu, P., Barber, S. D., Ackerman, M. L., Schoelz, J. K., & Thibado, P. M. (2013). Role of bias voltage and tunneling current in the perpendicular displacements of freestanding graphene via scanning tunneling microscopy. Journal of Vacuum Science and Technology B, 31, 04D103.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Department of Science and Technology, Government of India, for sanction of Fast Track Research Project for Young Scientists to Dr. Prashant K. Sharma (Ref. No.: SR/FTP/PS-157/2011) and Dr. Rashmi Madhuri (Ref. No.: SB/FT/CS-155/2012). Dr. Sharma (FRS/34/2012-2013/APH) and Dr. Madhuri (FRS/43/2013-2014/AC) are also thankful to the Indian Institute of Technology (Indian School of Mines), Dhanbad, for grant of Major Research Project under Faculty Research Scheme. We are also thankful to the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy, Government of India, for major research project (Sanction No. 34/14/21/2014-BRNS/0295). Suryakanti and Trupti are also thankful to the Indian Institute of Technology (Indian School of Mines), Dhanbad, for Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Debata, S., Das, T.R., Madhuri, R., Sharma, P.K. (2018). Materials Characterization Using Scanning Tunneling Microscopy: From Fundamentals to Advanced Applications. In: Sharma, S. (eds) Handbook of Materials Characterization. Springer, Cham. https://doi.org/10.1007/978-3-319-92955-2_6

Download citation

Publish with us

Policies and ethics