Skip to main content

Photoelectron Spectroscopy: Fundamental Principles and Applications

  • Chapter
  • First Online:
Handbook of Materials Characterization
  • 5949 Accesses

Abstract

Understanding the behaviour of electrons inside a material provides many important clues to tune variety of properties of a material. The spectroscopic techniques based upon analysis of ejected photoelectrons from a material provide direct access to electronic states of that material. This chapter presents a quick introduction to photoelectron spectroscopy and few basic applications. Although there are many dedicated books and review articles on these techniques, we aim to provide the reader with a concise overview of the technique without involving complex details. A brief overview of theoretical techniques to compute electronic structure of material is also presented. We hope that this chapter will offer a simplified introduction of working and applications of photoelectron spectroscopic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    E here refers to energy of the electron and \( \overrightarrow{E} \) to electric field between the hemispherical shells.

  2. 2.

    \( {E}_n=-\frac{13.6}{n^2} \).

References

  1. Darrigol, O. (2012). A history of optics from Greek antiquity to nineteenth century. New York: Oxford University Press.

    Google Scholar 

  2. Walter, G. (1948). Microwave Spectroscopy. Rev. Mod. Phys, 20, 668.

    Article  Google Scholar 

  3. Tissue, B. M. (2002). Ultraviolet and visible absorption spectroscopy. New York: Wiley. https://doi.org/10.1002/0471266965.com059.

    Book  Google Scholar 

  4. Owen, T. (2000). Fundamentals of modern UV-visible spectroscopy. Germany: Agilent Technologies.

    Google Scholar 

  5. Stuart, B. (2004). IR spectroscopy: Fundamentals and applications. Chichester: Wiley.

    Book  Google Scholar 

  6. Chen, L. X., Zhang, X., & Shelby, M. L. (2014). Recent advances on ultrafast X-ray spectroscopy in the chemical sciences. Chemical Science, 5, 4136.

    Article  CAS  Google Scholar 

  7. Gilmore, G. Practical gamma-ray spectroscopy. Wiley. https://onlinelibrary.wiley.com/doi/book/10.1002/9780470861981

  8. Brundle, C. R., & Baker, A. D. (1978). Electron spectroscopy: Theory, techniques and applications. London: Academic.

    Google Scholar 

  9. Brooks, F. D., & Klein, H. (2002). Neutron spectrometry historical review and present status. Nuclear Instruments and Methods in Physics Research A, 476, 1–11.

    Article  CAS  Google Scholar 

  10. Yano, J., & Yachandra, V. K. (2009). X-ray absorption spectroscopy. Photosynthesis Research, 102, 241.

    Article  CAS  Google Scholar 

  11. Cardona, M., & Ley, L. (1978). Photoemission in solids (Vol. I and II). New York: Springer-Verlag.

    Book  Google Scholar 

  12. Bings, N. H., Bogaerts, A., & Broekaert, J. A. C. (2010). Atomic spectroscopy: A review. Analytical Chemistry, 82, 4653.

    Article  CAS  Google Scholar 

  13. Dillane, S., Thompson, M., Meyer, J., Norquay, M., & Christopher O’Brien, R. (2011). Inductively coupled plasma atomic emission spectroscopy (ICP-AES) as a method of species differentiation of bone fragments. Australian Journal of Forensic Sciences, 43, 297.

    Article  Google Scholar 

  14. Hufner, S. (2003). Photoelectron spectroscopy: Principles and applications. New York: Springer.

    Book  Google Scholar 

  15. X-ray transition energies database NIIST. https://physics.nist.gov/PhysRefData/XrayTrans/Html/search.html

  16. Moseley, H. G. J. (1913). High frequency spectra of elements. Philosophical Magazine, 26, 1024.

    Google Scholar 

  17. Ultraviolet ISO data. http://www.spacewx.com/pdf/SET_21348_2004.pdf

  18. Reinert, F., & Hufner, S. (2005). Photoemission spectroscopy-from early days to recent applications. New Journal of Physics, 7, 97.

    Article  Google Scholar 

  19. Ellis, A., Feher, M., & Wright, T. (2005). Electronic and photoelectron spectroscopy: Fundamentals and case studies. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  20. Griffiths, D. J. Introduction to electrodynamics. Cambridge University Press. https://www.alibris.com/search/books/isbn/9781108420419

  21. Flynn, C. Lecture notes on “FFYS4346 Astrophysics II”, Lecture 4: Synchrotron Radiation. http://www.astro.utu.fi/~cflynn/astroII/l4.html.

  22. Kimura, K. (1999). Development of laser photoelectron spectroscopy based on resonantly enhanced multiphoton ionization. Journal of Electron Spectroscopy and Related Phenomena, 100, 273.

    Article  CAS  Google Scholar 

  23. Ishikawa, T., Tamasaku, K., & Yabash, M. (2005). High-resolution X-ray monochromator. Nuclear Instruments and Methods in Physics Research A, 547, 42.

    Article  CAS  Google Scholar 

  24. Grivet, P. Electron optics. Translated by P.W. Hawkes revised by A. Septier Pergamon Press, Oxford, New York, Toronto, Sydney.

    Google Scholar 

  25. McCord, M. A., & Rooks, M. J. (1997). In P. Rai-Choudhary (Ed.), Handbook of microlithography, micromachining and microfabrication, volume 1, Microlithography. SPIE Working Group http://spie.org/Publications/Book/2035576?SSO=1.

  26. http://www.microscopy.ethz.ch/lens.htm

  27. Hu, J., Rovey, J. L., & Zhao, W. (2017). Retarding field energy analyzer for high energy pulsed electron beam measurements. The Review of Scientific Instruments, 88, 013302.

    Article  Google Scholar 

  28. Halliday, D., Resnick R., & Walker, J. Fundamentals of physics. Wiley. https://www.wiley.com/en-to/Fundamentals+of+Physics+Extended%2C+10th+Edition-p-9781118230725

  29. Perriard, D. (2012). Characterization of a novel spin detector based on spin diffraction on a crystal. Master Thesis at ETH Zurich.

    Google Scholar 

  30. Wiza, J. L. (1979). Microchannel plate detectors. Nuclear instruments & Methods, 162, 587.

    Google Scholar 

  31. Boster, E. & Behm, T. (2010). “CCD Camera Operation and Theory http://instrumentation.tamu.edu/files/ccds.pdf

  32. Hablanian, M. (1997). High-vacuum technology, a practical guide. Marcel Dekker, Inc.

    Google Scholar 

  33. Marquardt, N. Introduction to the principles of vacuum physics. http://www.chem.elte.hu/foundations/altkem/vakuumtechnika/CERN01.pdf

  34. https://en.wikipedia.org/wiki/Rotary_vane_pump#/media/File:Rotary_vane_pump.svg

  35. Lindberg, V. (2008). Course on Lab Techniques, Rochester Institute of Technology, Chapter 6, Vacuum pumps. https://people.rit.edu/vwlsps/LabTech/Pumps.pdf.

  36. Umrath, W. Fundamentals of vacuum technology https://www3.nd.edu/~nsl/Lectures/urls/LEYBOLD_FUNDAMENTALS.pdf

  37. Zettili, N. Quantum mechanics: Concepts and applications. Wiley. https://www.wiley.com/en-us/Quantum+Mechanics%3A+Concepts+and+Applications%2C+2nd+Edition-p-9780470026793

  38. Kittel, C. Introduction to solid state physics. Wiley. https://www.wiley.com/en-us/Introduction+to+Solid+State+Physics%2C+8th+Edition-p-9780471415268

  39. Laporte, O., & Meggers, W. F. (1925). Some rules of spectral structure. Journal of the Optical Society of America, 11, 459.

    Article  CAS  Google Scholar 

  40. Capelle, K. (2006). A birds-eye view of density-functional theory. arxiv:cond-mat/0211443.

    Article  CAS  Google Scholar 

  41. https://upload.wikimedia.org/wikipedia/commons/thumb/c/c1/Brillouin_Zone_(1st,_FCC).svg/2000px-Brillouin_Zone_(1st,_FCC).svg.png

  42. http://xpssimplified.com/periodictable.php

  43. https://upload.wikimedia.org/wikipedia/commons/3/30/Klechkowski_rule_2.svg

  44. http://www.casaxps.com/

  45. Huschka, W., Ross, D., Maier, M., & Umbach, E. (1988). Calibrated binding energies of some core levels in the energy range between 1.5–4keV. Journal of Electron Spectroscopy and Related Phenomena, 46, 273.

    Article  CAS  Google Scholar 

  46. Brox, B., & Olefjord, I. (1988). ESCA studies of MoO2 and MoO3. Surface and Interface Analysis, 13, 3.

    Article  CAS  Google Scholar 

  47. http://cbc.arizona.edu/chemt/Flash/photoelectron.html

  48. https://en.wikipedia.org/wiki/Angle-resolved_photoemission_spectroscopy

  49. Lindau, I., & Hagstrom, S. B. M. (1971). High resolution electron energy analyser at ultrahigh vacuum conditions. Journal de Physique, E4, 936.

    Google Scholar 

  50. Niehus, H., & Bauer, E. (1975). Low energy ion backscattering spectroscopy (ISS) with a commercial Auger cylindrical mirror analyzer (CMA). The Review of Scientific Instruments, 46, 1275.

    Article  CAS  Google Scholar 

  51. Knapp, J. A., Lapeyre, G. J., Smith, N. V., & Traum, M. M. (1982). Modification of cylindrical mirror analyser for angle resolved photoelectron spectroscopy. The Review of Scientific Instruments, 53, 781.

    Article  CAS  Google Scholar 

  52. Chiang, T. C., Knapp, J. A., & Eastman, D. E. (1979). Angle resolved photo-emission and valence band dispersions E(k) for GaAs: Direct vs indirect models. Solid State Communications, 31, 917.

    Article  CAS  Google Scholar 

  53. http://image.sciencenet.cn/album/201404/23/151523b496kcef1enlzaln.jpg

  54. Pandey, K. C., & Phillips, J. C. (1974). Nonlocal pseudopotentials for Ge and GaAs. Physical Review B, 9, 1552.

    Article  CAS  Google Scholar 

  55. Chiang, T. C., Knapp, J. A., Aono, M., & Eastman, D. E. (1980). Angle resolved photo-emission, valence band dispersion E(k) and electron and hole lifetimes for GaAs. Physical Review B, 21, 3513.

    Article  CAS  Google Scholar 

  56. Courths, R., Wern, H., Hau, U., Cord, B., Bachelier, V., & Hufner, S. (1984). Band structure of Cu, Ag and Au: Location of direct transitions on Λ line using angle-resolved photoelectron spectroscopy. Journal of Physics F: Metal Physics, 14, 1559.

    Article  CAS  Google Scholar 

  57. Kane, E. (1964). Implications of crystal momentum conservation in photoelectric emission for band structure measurements. Physical Review Letters, 12, 97.

    Article  CAS  Google Scholar 

  58. Mahatha, S. K., Patel, K. D., & Krishnakumar, S. R. M. (2012). Electronic structure investigation of MoS2 and MoSe2 using angle-resolved photoelectron spectroscopy and ab-initio band structure studies. Journal of Physics: Condensed Matter, 24, 475504.

    CAS  Google Scholar 

  59. Kordyuk, A. A. (2014). ARPES experiment in fermiology of quasi-2D metals. Low Temperature Physics, 40, 286.

    Article  CAS  Google Scholar 

  60. Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., Bansil, A., Grauer, D., Hor, Y. S., Cava, R. J., & Hasan, M. Z. (2009). Observation of a large gap topological class with a single Dirac cone on the surface. Nature Physics, 5, 398.

    Article  CAS  Google Scholar 

  61. Pulizzi, F. (2012). Spintronics. Nature Materials, 11, 367.

    Article  CAS  Google Scholar 

  62. Pierce, D. T., Cellota, R. J., Kelley, M. H., & Unguris, J. (1988). Electron spin polarization analyzers for use with synchrotron radiation. Nuclear Instruments and Methods in Physics Research, A266, 550.

    Article  Google Scholar 

  63. Pierce, D. T., Kuyatt, C. E., & Celotta, R. J. (1979). Spin and energy analyzed photoemission: A feasibility analysis. The Review of Scientific Instruments, 50, 1467.

    Article  CAS  Google Scholar 

  64. Hughes, V. W., Long, R. L., Jr., Lubell, M. S., Posner, M., & Raith, W. (1972). Polarized electrons from photoionization of polarized alkali atoms. Physical Review A, 5, 195.

    Article  Google Scholar 

  65. Fletcher, G. D., Gay, T. J., & Lubell, M. S. (1986). New insights into Mott-scattering electron polarimetry. Physical Review A, 34, 911.

    Article  CAS  Google Scholar 

  66. Wainwright, P. F., Alguard, M. J., Baum, G., & Lubell, M. S. (1978). Application of a dc Fano effect polarized electron source to low-energy atom scattering. Review of Scientific Instruments, 49, 571.

    Article  CAS  Google Scholar 

  67. Sherman, N. (1956). Coulomb scattering of relativistic electrons by point nuclei. Physics Review, 103, 1601.

    Article  CAS  Google Scholar 

  68. Sherman, N., & Nelson, D. F. (1959). Determination of electron polarization by means of Mott-scattering. Physics Review, 114, 1541.

    Article  CAS  Google Scholar 

  69. Jozwiak, C., et al. (2010). A high efficiency spin resolved photoemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry. Review of Scientific Instruments, 81, 053904.

    Article  CAS  Google Scholar 

  70. Takayama, A. Anomalous Rashba effect of Bi thin film studied by spin-resolved ARPES. Intech Open Books. https://doi.org/10.5772/66278.

    Google Scholar 

  71. Berglund, C. N., & Spicer, W. E. (1964). Photoemission studies of copper and silver: Theory. Physics Review, 136, A1030.

    Article  Google Scholar 

  72. Smith, N. V. (1971). Photoemission properties of metals. Critical Reviews in Solid State and Materials Sciences, 2, 45.

    Article  CAS  Google Scholar 

  73. Springborg, M. Methods of electronic structure calculations: From molecules to solids. Wiley. https://www.wiley.com/en-us/Methods+of+Electronic+Structure+Calculations %3A+From+Molecules+to+Solids-p-9780471979753

  74. Born, M., & Oppenheimer, J. R. (1927). On the quantum theory of molecules. Annalen der Physik (Leipzig), 84, 457 Translated by S. M. Blinder with emendations by Brian Sutcliffe and Wolf Geppert.

    Article  CAS  Google Scholar 

  75. Hartree, D. R. (1928). The wave mechanics of atom with a non Coulomb central field: Part-I theory and methods. Mathematical Proceedings of the Cambridge Philosophical Society 24, 89; Hartree, D. R. (1928). The wave mechanics of atom with a non Coulomb central field: Part-III Term values and intensities in series of optical spectra. Mathematical Proceedings of the Cambridge Philosophical Society, 24, 426.

    Article  CAS  Google Scholar 

  76. Fock, V. (1930). Zeitschrift für Physik, 61, 126.

    Article  Google Scholar 

  77. Slater, J. C. (1929). The theory of complex spectra. Physics Review, 34, 1293.

    Article  CAS  Google Scholar 

  78. Jones, R. O., & Gunnarsson, O. (1989). Density functional formalism, its applications and prospects. Rev Modern Physics, 61, 689.

    Article  CAS  Google Scholar 

  79. Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physics Review, 136, B864.

    Article  Google Scholar 

  80. Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physics Review, 140, A1133.

    Article  Google Scholar 

  81. Thomas, L. H. (1927). Calculations of atomic fields. Proceedings of the Cambridge Philosophical Society, 23, 542; E. Fermi, Zeitschrift für Physik 48, 73 (1928).

    Article  CAS  Google Scholar 

  82. Loos, P.-F. (2014). Generalized local density approximation and one-dimensional finite uniform electron gases. Physical Review A, 89, 052523.

    Article  Google Scholar 

  83. Parr, R. G., & Yang, W. (1989). Density functional theory of atoms and molecules. New York: Oxford University Press.

    Google Scholar 

  84. Langreth, D. C., & Mehl, M. J. (1983). Beyond the local density approximation in calculations of ground state electronic properties. Physical Review B, 28, 1809.

    Article  CAS  Google Scholar 

  85. Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review B, 38, 3098.

    Article  CAS  Google Scholar 

  86. Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865 and “Erratum” Phys. Rev. Lett. 78, 1396 (1997).

    Article  CAS  Google Scholar 

  87. Perdew, J. P., & Zunger, A. (1981). Self-interaction correction to density functional approximations for many electron systems. Physical Review B, 23, 5048.

    Article  CAS  Google Scholar 

  88. Ceperley, D. M., & Alder, B. J. (1980). Ground state of the electron gas by stochastic method. Physical Review Letters, 45, 566.

    Article  CAS  Google Scholar 

  89. Marques, M. A. L., Oliveira, M. J. T., & Burnus, T. (2012). LIBXC: A library of exchange and correlation functionals for density functional theory. Computer Physics Communications, 183, 2272.

    Article  CAS  Google Scholar 

  90. Bohm, D., & Pines, D. (1951). A collective description of electron interactions-I magnetic interactions. Physics Review, 82, 625.

    Article  CAS  Google Scholar 

  91. Pines, D., & Bohm, D. (1952). A collective description of electron interactions-II collective vs individual particle aspects of the interactions. Physics Review, 85, 338.

    Article  CAS  Google Scholar 

  92. Bohm, D., & Pines, D. (1953). A collective description of electron interactions-III coulomb interaction in degenerate electron gas. Physics Review, 92, 609.

    Article  CAS  Google Scholar 

  93. Ehrenreich, H., & Cohen, M. H. (1959). A self-consistent field approach to the many electron problem. Physics Review, 115, 786.

    Article  Google Scholar 

  94. Ren, X., Rinke, P., Joas, C., & Scheffler, M. (2012). Random phase approximation and its applications in computational chemistry and material science. Journal of Materials Science, 47, 7447.

    Article  CAS  Google Scholar 

  95. Runge, E., & Gross, E. K. U. (1984). Density functional theory for time dependent systems. Physical Review Letters, 52, 997.

    Article  CAS  Google Scholar 

  96. van Leeuwen, R. (1998). Causality and symmetry in time dependent density functional theory. Physical Review Letters, 80, 1280.

    Article  Google Scholar 

  97. Keldysh, L. V. (1965). Diagram technique for non-equilibrium processes. Soviet Physics – JETP, 20, 1018.

    Google Scholar 

  98. Louie, S. G., & Cohen, M. L. (2006). Conceptual foundation of materials: A standard model for ground and excited states. Amsterdam: Elsevier.

    Google Scholar 

  99. Hedin, L., & Lundqvist, S. (1969). Effects of electron-electron and electron-phonon interactions on the one electron states of solids. Solid State Physics, 23, 1.

    CAS  Google Scholar 

  100. Hybertsen, M. S., & Louie, S. G. (1986). Electron correlations in semiconductors and insulators: Band gaps and quasiparticle energies. Physical Review B, 34, 5390.

    Article  CAS  Google Scholar 

  101. http://elk.sourceforge.net/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdish Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, J. (2018). Photoelectron Spectroscopy: Fundamental Principles and Applications. In: Sharma, S. (eds) Handbook of Materials Characterization. Springer, Cham. https://doi.org/10.1007/978-3-319-92955-2_12

Download citation

Publish with us

Policies and ethics