Skip to main content

Rare Earth Luminescence: Electronic Spectroscopy and Applications

  • Chapter
  • First Online:
Book cover Handbook of Materials Characterization

Abstract

The luminescence exhibited by matter has raised the human curiosity for centuries. The rapid emergent of the solid-state white light-emitting diodes based on the luminescent rare earth ions, especially Ce3+ that emits a complementary color (yellow) of blue light and has central contribution to the development of white LEDs, might be considered the latest lighting devices to light the whole twenty-first century. Thus, the luminescent RE3+ compounds have been significantly studied due to their remarkable photonic applications, presently extended from lighting and displays, laser physics to material science, and agriculture and medical diagnostics (especially bioimaging of tissues and cells). Excess works in the form of peer-reviewed articles, chapters, and books have been published on rare earth luminescence and applications. Most of the books contain larger theoretical studies on the photoluminescence spectroscopy of the rare earth ions, which are not easily understandable by the nonspecialized readers and fresh researchers.

The aim of this chapter is to present concise overview on the key concept of luminescence and electronic spectroscopy of rare earth compounds: energy transfer processes, luminescence spectra and their measurements, instrumental techniques, as well as applications (bioimaging and LEDs). In accordance with the title of the book, the content of the chapter is presented in an efficient and simple way to be better understandable by the nonspecialized readers and fresh researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Acceptor

AD:

Anno Domini

CAs:

Contrast agents

CCD:

Charge-coupled device

CET:

Cooperative energy transfer

CFL:

Compact fluorescent light

CIE:

Commission Internationale de l’Eclairage

CRI:

Color-rendering index

CT:

Computed tomography

D:

Donor

DCL:

Down-conversion luminescence

ED:

Electric dipole

EMU:

Energy migration-mediated upconversion

ESA:

Excited-state absorption

ET:

Energy transfer

ETU:

Energy transfer upconversion

FDG:

18-Fluorodeoxyglucose

GaInN:

Gallium indium nitride

GaN:

Gallium nitride

LEDs:

Light-emitting diodes

LMCT:

Ligand-to-metal charge transfer

LPS lamps:

Low-pressure sodium lamps

MCPs:

Micro-channel plates

MD:

Magnetic dipole

MH lamp:

Metal halide lamp

MNPs:

Magnetic nanoparticles

MRI:

Magnetic resonance imaging

ms:

Millisecond

NIR:

Near-infrared

NPs:

Nanoparticles

OPN:

Osteopontin

PA:

Photon avalanche

PAI:

Photoacoustic imaging

PAM:

Photoacoustic microscopy

PET:

Positron emission tomography

PMT:

Photomultiplier tubes

QDs:

Quantum dots

RE:

Rare earth

RGB:

Red-green-blue

S:

Singlet state

SPECT:

Single-photon emission computed tomography

T:

Triplet state

THP-1:

Tamm-Horsfall protein-1

TTA:

Thenoyltrifluoroacetonate

UC:

Upconversion

UCL:

Upconversion luminescence

UCNPs:

Upconversion nanoparticles

UV:

Ultraviolet

YAG:Ce3+ :

Y3Al5O12:Ce3+

α-CD:

α-Cyclodextrin

References

  1. Tilley, R. J. D. (2010). Colour and the optical properties of materials. Chichester: Wiley.

    Book  Google Scholar 

  2. Sato, M., Kim, S. W., Shimomura, Y., Hasegawa, T., Toda, K., & Adachi, G. (2016). Rare earth-doped phosphors for white light-emitting diodes. In Handbook on the physics and chemistry of rare earths (Vol. 49, pp. 1–128).

    Google Scholar 

  3. Morrow, R. C. (2008). LED lighting in horticulture. Hort Science, 43, 1947–1950.

    Google Scholar 

  4. Zhu, H., Lin, C. C., Luo, W., Shu, S., Liu, Z., Liu, Y., Kong, J., Ma, E., Cao, Y., Liu, R.-S., & Chen, X. (2014). Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nature Communications, 5, 4312.

    Article  CAS  Google Scholar 

  5. Lin, C. C., & Liu, R. S. (2011). Advances in phosphors for light-emitting diodes. Journal of Physical Chemistry Letters, 2, 1268–1277.

    Article  CAS  Google Scholar 

  6. Liu, Y., Tu, D., Zhu, H., & Chen, X. (2013). Lanthanide-doped luminescent nanoprobes: Controlled synthesis, optical spectroscopy, and bioapplications. Chemical Society Reviews, 42, 6924–6958.

    Article  CAS  Google Scholar 

  7. Bünzli J-C, G., & Eliseeva, S. V. (2013). Intriguing aspects of lanthanide luminescence. Chemical Science, 4, 1939–1949.

    Article  CAS  Google Scholar 

  8. Bunzli, J. C. G. (2016). Lanthanide luminescence: From a mystery to rationalization, understanding, and applications. Handbook on the Physics and Chemistry of Rare Earths, 50, 141–176.

    Article  Google Scholar 

  9. Bünzli, J. C. G. (2010). Lanthanide luminescence for biomedical analyses and imaging. Chemical Reviews, 110, 2729–2755.

    Article  CAS  Google Scholar 

  10. Bünzli J-C, G. (2015). On the design of highly luminescent lanthanide complexes. Coordination Chemistry Reviews, 293–294, 19–47.

    Article  CAS  Google Scholar 

  11. Felinto Brito, H., Manoel Loureiro Malta, O., Claudia Franca Cunha Felinto, M., & Epaminondas de Sousa Teotonio, E. (2010). Luminescence phenomena involving metal enolates, PATAI’S Chemistry of Functional Groups (pp. 131–184). Chichester: Wiley.

    Google Scholar 

  12. Malta, O. L., & Gonçalves e Silva, F. R. (1998). A theoretical approach to intramolecular energy transfer and emission quantum yields in coordination compounds of rare earth ions. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 54, 1593–1599.

    Article  Google Scholar 

  13. de Sá, G. F., Malta, O. L., de Mello, D. C., Simas, A. M., Longo, R. L., Santa-Cruz, P. A., & da Silva, E. F. (2000). Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coordination Chemistry Reviews, 196, 165–195.

    Article  Google Scholar 

  14. Khan, L. U., Brito, H. F., Hölsä, J., Pirota, K. R., Muraca, D., Felinto, M. C. F. C., Teotonio, E. E. S., & Malta, O. L. (2014). Red-green emitting and superparamagnetic nanomarkers containing Fe 3 O 4 functionalized with calixarene and rare earth complexes. Inorganic Chemistry, 53, 12902–12910.

    Article  CAS  Google Scholar 

  15. Kai, J., Felinto, M. C. F. C., Nunes, L. A. O., Malta, O. L., & Brito, H. F. (2011). Intermolecular energy transfer and photostability of luminescence-tuneable multicolour PMMA films doped with lanthanide–β-diketonate complexes. Journal of Materials Chemistry, 21, 3796–3802.

    Article  CAS  Google Scholar 

  16. Gschneidner, K. A., Bünzli, J.-C. G., & Pecharsky, V. K. (2007). Handbook on the physics and chemistry of rare earths (1st ed. pp. 1–511). North Holland: Elsevier.

    Google Scholar 

  17. Bünzli J-C, G., & Piguet, C. (2005). Taking advantage of luminescent lanthanide ions. Chemical Society Reviews, 34, 1048.

    Article  CAS  Google Scholar 

  18. Dong, H., Sun, L.-D., & Yan, C.-H. (2015). Energy transfer in lanthanide upconversion studies for extended optical applications. Chemical Society Reviews, 44, 1608–1634.

    Article  CAS  Google Scholar 

  19. Binnemans, K. (2009). Lanthanide-based luminescent hybrid materials. Chemical Reviews, 109, 4283–4374.

    Article  CAS  Google Scholar 

  20. Binnemans, K. (2015). Interpretation of europium(III) spectra. Coordination Chemical Reviews, 295, 1–45.

    Article  CAS  Google Scholar 

  21. Harvey, N. E. (1957). A history of luminescence: From the earliest times until 1900.

    Google Scholar 

  22. Khan, L. U., & Khan, Z. U. (2017). Bifunctional nanomaterials: Magnetism, luminescence and multimodal biomedical applications. In Complex magnetic nanostructures (pp. 121–171). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  23. Khan, L. U. (2015). Optical and magnetic nanomaterials containing Fe3O4 and SiO2 matrices functionalized with calixarene and rare earth complexes. São Paulo: University of Sao Paulo.

    Google Scholar 

  24. Lastusaari, M., Laamanen, T., Malkamäki, M., Eskola, K. O., Kotlov, A., Carlson, S., Welter, E., Brito, H. F., Bettinelli, M., Jungner, H., & Hölsä, J. (2012). The bologna stone: History’s first persistent luminescent material. European Journal of Mineralogy, 24, 885–890.

    Article  CAS  Google Scholar 

  25. Anon. http://www.dailymail.co.uk/sciencetech/article-2950494/Would-drive-glow-dark-car-Nissan-creates-luminous-model-Leaf-glows-10-hours-thanks-UV-paint.html 2950494.

  26. Virk, H. S. (2014). Luminescence basic concepts, applications and instrumentation. Switzerland: Trans Tech Publications Limited.

    Google Scholar 

  27. Kitsinelis, S. (2015). Light sources. Boca Raton: CRC Press Talor & Francis Group.

    Google Scholar 

  28. Mottier, P. (2009). LEDs for lightning applications (1st ed.). UK: John Wiley & Sons.

    Google Scholar 

  29. Schubert, E. F. (2006). Light-emitting diodes (2nd ed.). UK: Cambridge University Press.

    Google Scholar 

  30. Craford, M. G., Shaw, R. W., Herzog, A. H., & Groves, W. O. (1972). Radiative recombination mechanisms in GaAsP diodes with and without nitrogen doping. Journal of Applied Physics, 43, 4075–4083.

    Article  Google Scholar 

  31. Amano, H., Kito, M., Hiramatsu, K., & Akasaki, I. (1989). P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)\n. Japanese Journal of Applied Physics, 28, L2112–L2114.

    Article  CAS  Google Scholar 

  32. Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S. I., Yamada, T., & Mukai, T. (1995). Superbright green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes. Japanese Journal of Applied Physics, 34, L1332.

    Article  CAS  Google Scholar 

  33. Atwood, D. A. (2005). The rare earth elements: Fundamentals and applications. Hoboken: Wiley.

    Google Scholar 

  34. Voncken, J. H. L. (2016). The rare earth elements. Cham: Springer International Publishing.

    Book  Google Scholar 

  35. Cotton, S. (2005). Chap. 5 Electronic and magnetic properties of the lanthanides. In Lanthanide and actinide chemistry (pp. 61–87). England: John Wiley & Sons, Ltd.

    Google Scholar 

  36. Sastri, V. S., Bünzli, J.-C. G., Rao, V. R., Rayudu, V. R., & Perumareddi, J. R. (2003). Modern aspects of rare earths and their complexes (Elsevier B.V).

    Google Scholar 

  37. Anon. (1968). J. Galissard de Marignac, P.E. Lecoq de Boisboudran, 1880, 1886 (http://www.rsc.org/periodic-table/element/64/gadolinium#history; Weeks 1968) 1886 1968.

  38. Rodrigues, R. V., Marciniak, L., Khan, L. U., Matos, J. R., Brito, H. F., & Stręk, W. (2016). Luminescence investigation of Dy2O2S and Dy2O2SO4 obtained by thermal decomposition of sulfate hydrate. Journal of Rare Earths, 34, 814–819.

    Article  CAS  Google Scholar 

  39. Reid, M. F. (2016). Theory of rare-earth electronic structure and spectroscopy. In Handbook on the physics and chemistry of rare earths (Vol. 50, pp. 47–64).

    Chapter  Google Scholar 

  40. Chen, X., Liu, Y., & Tu, D. (2014). Lanthanide-doped luminescent nanomaterials. Berlin: Springer Berlin Heidelberg.

    Book  Google Scholar 

  41. Khan, L. U., Zambon, L. F. M., Santos, J. L., Rodrigues, R. V., Costa, L. S., Muraca, D., Pirota, K. R., Felinto, M. C. F. C., Malta, O. L., & Brito, H. F. (2018). Red-emitting magnetic nanocomposites assembled from Ag-decorated Fe 3 O 4 @SiO 2 and Y 2 O 3 :Eu 3+ : Impact of iron-oxide/silver nanoparticles on Eu 3+ emission. Chemistry and Selection, 3, 1157–1167.

    CAS  Google Scholar 

  42. Dorenbos, P. (2002). Light output and energy resolution of Ce3+-doped scintillators. Nuclear Instruments Methods Physics Research Section A Accelerators, Spectrometers, Detectors Associated Equipment, 486, 208–213.

    Article  CAS  Google Scholar 

  43. Lakowicz, J. R. (2006). Energy transfer, Principles of Fluorescence Spectroscopy (pp. 443–475). Boston: Springer US.

    Google Scholar 

  44. Kalisky, K. (2006). The physics and engineering of solid state lasers.

    Google Scholar 

  45. Shrivastava, N., Khan, L. U., Khan, Z. U., Vargas, J., Moscoso-Londoño, O., Ospina, C., Brito, H. F., Javed, Y., Felinto, M. C. F. C., de Menezes, A. S., Knobel, M., & Sharma, S. K. (2017). Building block magneto-luminescent nanomaterials of iron-oxide/ZnS@LaF 3 :Ce 3+ ,Gd 3+ ,Tb 3+ with green emission. Journal of Materials Chemistry C, 5, 2282–2290.

    Article  CAS  Google Scholar 

  46. Zabicky, J., & Zabicky, J. (2009). The chemistry of metal enolates, Part 1.

    Google Scholar 

  47. Andrews, D. L. (1989). A unified theory of radiative and radiationless molecular energy transfer. Chemical Physics, 135, 195–201.

    Article  CAS  Google Scholar 

  48. Bettinelli, M., & Flint, C. D. (1990). Non-resonant energy transfer between Tb 3+ and Eu 3+ in the cubic hexachloroelpasolite crystals Cs 2 NaTb 1-x Eu x Cl 6 (x=0.01-0.15). Journal of Physics Condensed Matter, 2, 8417–8426.

    Article  CAS  Google Scholar 

  49. Di Bartolo, B. (1984). Energy transfer processes in condensed matter (Vol. 114). Boston: Springer US.

    Google Scholar 

  50. Miyakawa, T., & Dexter, D. L. (1970). Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids. Physical Review B, 1, 2961–2969.

    Article  Google Scholar 

  51. Dexter, D. L. (1953). A theory of sensitized luminescence in solids. The Journal of Chemical Physics, 21, 836–850.

    Article  CAS  Google Scholar 

  52. Soules, T. F., & Duke, C. B. (1971). Resonant energy transfer between localized electronic states in a crystal. Physical Review B, 3, 262–274.

    Article  Google Scholar 

  53. Malta, O. L. (2008). Mechanisms of non-radiative energy transfer involving lanthanide ions revisited. Journal of Non-Crystalline Solids, 354, 4770–4776.

    Article  CAS  Google Scholar 

  54. Faustino, W. M., Nunes, L. A., Terra, I. A. A., Felinto, M. C. F. C., Brito, H. F., & Malta, O. L. (2013). Measurement and model calculation of the temperature dependence of ligand-to-metal energy transfer rates in lanthanide complexes. Journal Luminescence, 137, 269–273.

    Article  CAS  Google Scholar 

  55. Shyichuk, A., Câmara, S. S., Weber, I. T., Carneiro Neto, A. N., Nunes, L. A. O., Lis, S., Longo, R. L., & Malta, O. L. (2016). Energy transfer upconversion dynamics in YVO4:Yb3+,Er3+. Journal of Luminescence, 170, 560–570.

    Article  CAS  Google Scholar 

  56. Debasu, M. L., Ananias, D., Rocha, J., Malta, O. L., & Carlos, L. D. (2013). Energy-transfer from Gd(iii) to Tb(iii) in (Gd,Yb,Tb)PO4 nanocrystals. Physical Chemistry Chemical Physics, 15, 15565–15571.

    Article  CAS  Google Scholar 

  57. Shrivastava, N., Khan, L. U., Vargas, J. M., Ospina, C., Coaquira, J. A. Q., Zoppellaro, G., Brito, H. F., Javed, Y., Shukla, D. K., Felinto, M. C. F. C., & Sharma, S. K. (2017). Efficient multicolor tunability of ultrasmall ternary-doped LaF3 nanoparticles: Energy conversion and magnetic behavior. Physical Chemistry Chemical Physics, 19, 18660–18670.

    Article  CAS  Google Scholar 

  58. Bloembergen, N. (1959). Solid state infrared quantum counters. Physical Review Letters, 2, 84–85.

    Article  CAS  Google Scholar 

  59. Zhou, J., Liu, Q., Feng, W., Sun, Y., & Li, F. (2015). Upconversion luminescent materials: Advances and applications. Chemical Reviews, 115, 395–465.

    Article  CAS  Google Scholar 

  60. Liu, G. (2015). Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors. Chemical Society Reviews, 44, 1635–1652.

    Article  CAS  Google Scholar 

  61. Chen, G., Qiu, H., Prasad, P. N., & Chen, X. (2014). Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chemical Reviews, 114, 5161–5214.

    Article  CAS  Google Scholar 

  62. Wang, F., Deng, R., Wang, J., Wang, Q., Han, Y., Zhu, H., Chen, X., & Liu, X. (2011). Tuning upconversion through energy migration in core–shell nanoparticles. Nature Materials, 10, 968–973.

    Article  CAS  Google Scholar 

  63. Zheng, W., Huang, P., Tu, D., Ma, E., Zhu, H., & Chen, X. (2015). Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection. Chemical Society Reviews, 44, 1379–1415.

    Article  CAS  Google Scholar 

  64. Chivian, J. S., Case, W. E., & Eden, D. D. (1979). The photon avalanche: A new phenomenon in Pr3+−based infrared quantum counters. Applied Physics Letters, 35, 124–125.

    Article  CAS  Google Scholar 

  65. Xu, W., Chen, B., Yu, W., Zhu, Y., Liu, T., Xu, S., Min, X., Bai, X., & Song, H. (2012). The up-conversion luminescent properties and silver-modified luminescent enhancement of YVO4:Yb3+, Er3+ NPs. Dalton Transactions, 41, 13525.

    Article  CAS  Google Scholar 

  66. Blasse, G., & Grabmaier, B. C. (1994). Luminescent materials. Berlin: Springer Berlin Heidelberg.

    Book  Google Scholar 

  67. Lakshminarayana, G., Weis, E. M., Lira, A. C., Caldiño, U., Williams, D. J., & Hehlen, M. P. (2013). Cross relaxation in rare-earth-doped oxyfluoride glasses. Journal of Luminescence, 139, 132–142.

    Article  CAS  Google Scholar 

  68. Kurzen, H., Bovigny, L., Bulloni, C., & Daul, C. (2013). Electronic structure and magnetic properties of lanthanide 3+ cations. Chemical Physics Letters, 574, 129–132.

    Article  CAS  Google Scholar 

  69. Khan, L. U., Muraca, D., Brito, H. F., Moscoso-Londoño, O., Felinto, M. C. F. C., Pirota, K. R., Teotonio, E. E. S., & Malta, O. L. (2016). Optical and magnetic nanocomposites containing Fe3O4@SiO2 grafted with Eu3+ and Tb3+ complexes. Journal of Alloys and Compounds, 686, 453–466.

    Article  CAS  Google Scholar 

  70. Malta, O. L., & Carlos, L. D. (2003). Intensities of 4f-4f transitions in glass materials. Quim Nova, 26, 889–895.

    Article  CAS  Google Scholar 

  71. Sá Ferreira, R. A., Nobre, S. S., Granadeiro, C. M., Nogueira, H. I. S., Carlos, L. D., & Malta, O. L. (2006). A theoretical interpretation of the abnormal 5D0→7F4 intensity based on the Eu3+ local coordination in the Na9[EuW10O36]·14H2O polyoxometalate. Journal of Luminescence, 121, 561–567.

    Article  CAS  Google Scholar 

  72. Borges, A. S., Dutra, J. D. L., Freire, R. O., Moura, R. T., Da Silva, J. G., Malta, O. L., Araujo, M. H., & Brito, H. F. (2012). Synthesis and characterization of the europium(III) pentakis(picrate) complexes with imidazolium countercations: Structural and photoluminescence study. Inorganic Chemistry, 51, 12867–12878.

    Article  CAS  Google Scholar 

  73. Barbosa, H. P., Kai, J., Silva, I. G. N., Rodrigues, L. C. V., Felinto, M. C. F. C., Hölsä, J., Malta, O. L., & Brito, H. F. (2015). Luminescence investigation of R3+-doped alkaline earth tungstates prepared by a soft chemistry method. Journal of Luminescence, 170, 1–7.

    Google Scholar 

  74. Lourenço, A. V. S., Kodaira, C. A., Ramos-Sanchez, E. M., Felinto, M. C. F. C., Goto, H., Gidlund, M., Malta, O. L., & Brito, H. F. (2013). Luminescent material based on the [Eu(TTA)3(H2O)2] complex incorporated into modified silica particles for biological applications. Journal of Inorganic Biochemistry, 123, 11–17.

    Article  CAS  Google Scholar 

  75. Murakami, S., Herren, M., Rau, D., & Morita, M. (2000). Photoluminescence and decay profiles of undoped and Fe3+, Eu3+-doped PLZT ceramics at low temperatures down to 10 K. Inorganica Chimica Acta, 300–302, 1014–1021.

    Article  Google Scholar 

  76. Anon. (2002). Fluorolog ® -3 operational manual (Vol. 2). New Jersey: Horiba Jobin Yvon Inc.

    Google Scholar 

  77. Lakowicz, J. R. (2006). In J. R. Lakowicz (Ed.), Principles of fluorescence spectroscopy. Boston: Springer US.

    Chapter  Google Scholar 

  78. Julien, C., & Hirlimann, C. (1980). Ebert-Fastie monochromator alignment. Journal of Physics E, 13, 923–924.

    Article  CAS  Google Scholar 

  79. Gaertner, A. A., Yoon, H. W., & Germer, T. A. (2014). Dispersive methods. Experimental Methods in the Physical Science, 46, 68–95.

    Google Scholar 

  80. Simon, J. M., Gil, M. A., & Fantino, A. N. (1986). Czerny-turner monochromator: Astigmatism in the classical and in the crossed beam dispositions. Applied Optics, 25, 3715.

    Article  CAS  Google Scholar 

  81. Shafer, A. B., Megill, L. R., & Droppleman, L. (1964). Optimization of the Czerny-Turner spectrometer. Journal of the Optical Society of America, 54, 879.

    Article  CAS  Google Scholar 

  82. An, Y., Sun, Q., Liu, Y., Li, C., & Wang, Z.-Q. (2013). The design of astigmatism-free crossed czerny-turner spectrometer. Optik – International Journal for Light and Electron Optics, 124, 2539–2543.

    Article  Google Scholar 

  83. Kapusta, P., Wahl, M., & Erdmann, R. (2015). In P. Kapusta, M. Wahl, & R. Erdmann (Eds.), Advanced photon counting (Vol. 15). Cham: Springer International Publishing.

    Google Scholar 

  84. Hamamtsu. (2007). Basic principles of photomultiplier tubes. Photomultiplier Tubes Basics Applications, 13–19.

    Google Scholar 

  85. Gu, Z., Yan, L., Tian, G., Li, S., Chai, Z., & Zhao, Y. (2013). Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Advanced Materials, 25, 3758–3779.

    Article  CAS  Google Scholar 

  86. Wang, F., Banerjee, D., Liu, Y., Chen, X., & Liu, X. (2010). Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst, 135, 1839–1854.

    Article  CAS  Google Scholar 

  87. Dong, H., Du, S. R., Zheng, X. Y., Lyu, G. M., Sun, L. D., Li, L. D., Zhang, P. Z., Zhang, C., & Yan, C. H. (2015). Lanthanide nanoparticles: From design toward bioimaging and therapy. Chemical Reviews, 115, 10725–10815.

    Article  CAS  Google Scholar 

  88. Wang, T., Mancuso, J. J., Kazmi, S. M. S., Dwelle, J., Sapozhnikova, V., Willsey, B., Ma, L. L., Qiu, J., Li, X., Dunn, A. K., Johnston, K. P., Feldman, M. D., & Milner, T. E. (2012). Combined two-photon luminescence microscopy and OCT for macrophage detection in the hypercholesterolemic rabbit aorta using plasmonic gold nanorose. Lasers in Surgery and Medicine, 44, 49–59.

    Article  Google Scholar 

  89. Qiao, R., Qiao, H., Zhang, Y., Wang, Y., Chi, C., Tian, J., Zhang, L., Cao, F., & Gao, M. (2017). Molecular imaging of vulnerable atherosclerotic plaques in vivo with osteopontin-specific upconversion nanoprobes. ACS Nano acsnano. 6b07842.

    Google Scholar 

  90. Wang, H., Zhu, X., Han, R., Wang, X., Yang, L., & Wang, Y. (2017). Near-infrared light activated photodynamic therapy of THP-1 macrophages based on core-shell structured upconversion nanoparticles. Microporous and Mesoporous Materials, 239, 78–85.

    Article  CAS  Google Scholar 

  91. Clarke, L. P., Velthuizen, R. P., Camacho, M. A., Heine, J. J., Vaidyanathan, M., Hall, L. O., Thatcher, R. W., & Silbiger, M. L. (1995). MRI segmentation: Methods and applications. Magnetic Resonance Imaging, 13, 343–368.

    Article  CAS  Google Scholar 

  92. Key, J., & Leary, J. F. (2014). Nanoparticles for multimodal in vivo imaging in nanomedicine. International Journal of Nanomedicine, 9, 711–726.

    Google Scholar 

  93. Kircher, M. F., & Willmann, J. K. (2012). Molecular body imaging: MR imaging, CT, and US. part I. principles. Radiology, 263, 633–643.

    Article  Google Scholar 

  94. Xue, Z., Yi, Z., Li, X., Li, Y., Jiang, M., Liu, H., & Zeng, S. (2017). Upconversion optical/magnetic resonance imaging-guided small tumor detection and in vivo tri-modal bioimaging based on high-performance luminescent nanorods. Biomaterials, 115, 90–103.

    Article  CAS  Google Scholar 

  95. Jung, J., Kim, M. A., Cho, J. H., Lee, S. J., Yang, I., Cho, J., Kim, S. K., Lee, C., & Park, J. K. (2012). Europium-doped gadolinium sulfide nanoparticles as a dual-mode imaging agent for T 1-weighted MR and photoluminescence imaging. Biomaterials, 33, 5865–5874.

    Article  CAS  Google Scholar 

  96. Ni, D., Zhang, J., Bu, W., Xing, H., Han, F., Xiao, Q., Yao, Z., Chen, F., He, Q., Liu, J., Zhang, S., Fan, W., Zhou, L., Peng, W., & Shi, J. (2014). Dual-targeting upconversion nanoprobes across the blood-brain barrier for magnetic resonance/fluorescence imaging of intracranial glioblastoma. ACS Nano, 8, 1231–1242.

    Article  CAS  Google Scholar 

  97. Li, X., Zhang, X.-N., Li, X.-D., Chang, J., Li, X., Zhang, X.-N., Li, X.-D., & Chang, J. (2016). Multimodality imaging in nanomedicine and nanotheranostics. Cancer Biology and Medicine, 13, 339–348.

    Article  CAS  Google Scholar 

  98. Lee, J., Lee, T. S., Ryu, J., Hong, S., Kang, M., Im, K., Kang, J. H., Lim, S. M., Park, S., & Song, R. (2013). RGD peptide-conjugated multimodal NaGdF4:Yb3+/Er3+ nanophosphors for upconversion luminescence, MR, and PET imaging of tumor angiogenesis. Journal of Nuclear Medicine, 54, 96–103.

    Article  CAS  Google Scholar 

  99. Liu, Q., Chen, M., Sun, Y., Chen, G., Yang, T., Gao, Y., Zhang, X., & Li, F. (2011). Multifunctional rare-earth self-assembled nanosystem for tri-modal upconversion luminescence/fluorescence/positron emission tomography imaging. Biomaterials, 32, 8243–8253.

    Article  CAS  Google Scholar 

  100. Union, I., Pure, O. F., & Chemistry, A. (1991). Commission on radiochemistry and nuclear techniques * radiolabeling of monoclonal. Radiolabeling of Monoclonal Antibodies with Metal Chelates w : m : m : m : m : m : m, 63, 427–463.

    Google Scholar 

  101. Misri, R., Saatchi, K., & Häfeli, U. O. (2012). Nanoprobes for hybrid SPECT/MR molecular imaging. Nanomedicine (London, England), 7, 719–733.

    Article  CAS  Google Scholar 

  102. Yang, Y., Sun, Y., Cao, T., Peng, J., Liu, Y., Wu, Y., Feng, W., Zhang, Y., & Li, F. (2013). Hydrothermal synthesis of NaLuF 4: 153Sm,Yb,Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging. Biomaterials, 34, 774–783.

    Article  CAS  Google Scholar 

  103. Yu, S.-B., & Watson, A. D. (1999). Metal-based X-ray contrast media. Chemical Reviews, 99, 2353–2378.

    Article  CAS  Google Scholar 

  104. Zhu, J., Lu, Y., Li, Y., Jiang, J., Cheng, L., Liu, Z., Guo, L., Pan, Y., & Gu, H. (2014). Synthesis of Au-Fe3O4 heterostructured nanoparticles for in vivo computed tomography and magnetic resonance dual model imaging. Nanoscale, 6, 199–202.

    Article  CAS  Google Scholar 

  105. Li, F., Li, C., Liu, J., Liu, X., Zhao, L., Bai, T., Yuan, Q., Kong, X., Han, Y., Shi, Z., & Feng, S. (2013). Aqueous phase synthesis of upconversion nanocrystals through layer-by-layer epitaxial growth for in vivo X-ray computed tomography. Nanoscale, 5, 6950–6959.

    Article  CAS  Google Scholar 

  106. Li, X., Yi, Z., Xue, Z., Zeng, S., & Liu, H. (2017). Multifunctional BaYbF 5 : Gd/Er upconversion nanoparticles for in vivo tri-modal upconversion optical, X-ray computed tomography and magnetic resonance imaging. Materials Science and Engineering: C, 75, 510–516.

    Article  CAS  Google Scholar 

  107. Beard, P. (2011). Biomedical photoacoustic imaging. Interface Focus, 1, 602–631.

    Article  Google Scholar 

  108. Prodi, L., Rampazzo, E., Rastrelli, F., Speghini, A., & Zaccheroni, N. (2015). Imaging agents based on lanthanide doped nanoparticles. Chemical Society Reviews, 44, 4922–4952.

    Article  CAS  Google Scholar 

  109. Theerthagiri, J., Senthil, R. A., Thirumalai, D., & Madhavan, J. (2015). Handbook of ultrasonics and sonochemistry (pp. 1–29).

    Google Scholar 

  110. Sheng, Y., Liao, L.-D., Thakor, N., & Tan, M. C. (2014). Rare-earth doped particles as dual-modality contrast agent for minimally-invasive luminescence and dual-wavelength photoacoustic imaging. Scientific Reports, 4, 6562.

    Article  CAS  Google Scholar 

  111. Sheng, Y., De Liao, L., Bandla, A., Liu, Y. H., Yuan, J., Thakor, N., & Tan, M. C. (2017). Enhanced near-infrared photoacoustic imaging of silica-coated rare-earth doped nanoparticles. Materials Science and Engineering: C, 70, 340–346.

    Article  CAS  Google Scholar 

  112. Maji, S. K., Sreejith, S., Joseph, J., Lin, M., He, T., Tong, Y., Sun, H., Yu, S. W. K., & Zhao, Y. (2014). Upconversion nanoparticles as a contrast agent for photoacoustic imaging in live mice. Advanced Materials, 26, 5633–5638.

    Article  CAS  Google Scholar 

  113. Nakamura, S., & Stephen Pearton, G. F. (2013). The blue laser diode. The complete story. Springer Science Business Media, 12, 755–756.

    Google Scholar 

  114. George, N. C., Denault, K. A., & Seshadri, R. (2013). Phosphors for solid-state white lighting. Annual Review of Materials Research, 43, 481–501.

    Article  CAS  Google Scholar 

  115. Ku, A. Y., Setlur, A. A., & Loudis, J. (2015). Impact of light emitting diode adoption on rare earth element use in lighting: Implications for yttrium, europium, and terbium demand. Electrochemical Society Interface, 24, 45–49.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) and to The World Academy of Sciences (TWAS) for the advancement of science in developing countries and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latif Ullah Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, L.U., Khan, Z.U. (2018). Rare Earth Luminescence: Electronic Spectroscopy and Applications. In: Sharma, S. (eds) Handbook of Materials Characterization. Springer, Cham. https://doi.org/10.1007/978-3-319-92955-2_10

Download citation

Publish with us

Policies and ethics