Skip to main content

Chronic Kidney Disease and Hypertension

  • Chapter
  • First Online:
Management of Hypertension

Abstract

Hypertension can cause kidney disease and kidney disease can cause hypertension. However, hypertension may cause progressive kidney disease only in genetically susceptible individuals. The second most common cause of end-stage renal disease continues to be hypertension. Increased blood pressure participates in the pathogenesis of renal disease and the kidney is crucial in the long-term regulation of blood pressure. The development of hypertension and kidney damage is well-documented in many well-characterized animal models of hypertension. Attenuating the development and severity of hypertension prevents the development of end-organ damage. Hypertensive nephrosclerosis is a non-specific clinical diagnosis given to patients with chronic kidney disease, low-level proteinuria, and elevated blood pressure. Arterionephrosclerosis has been suggested as the clinical diagnosis of patients with chronic kidney disease and elevated blood pressure in the absence of diabetes or known genetic cause. In patients with a known genetic cause, the term glomerulosclerosis, preceded by the genetic cause, should used, for instance, APOL1-associated glomerulosclerosis, GSTM1-associated glomerulosclerosis. Increased sodium intake, inflammation, and oxidative stress are interrelated and important in the pathogenesis of hypertension and kidney disease. It is likely that hypertension and kidney disease may share the same causes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kopp JB. Rethinking hypertensive kidney disease: arterionephrosclerosis as a genetic, metabolic, and inflammatory disorder. Curr Opin Nephrol Hypertens. 2013;22:266–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. O'Seaghdha CM, Fox CS. Genetics of chronic kidney disease. Nephron Clin Pract. 2011;118:c55–63.

    Article  PubMed  CAS  Google Scholar 

  3. Garrett MR, Pezzolesi MG, Korstanje R. Integrating human and rodent data to identify the genetic factors involved in chronic kidney disease. J Am Soc Nephrol. 2010;21:398–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1–150.

    Article  Google Scholar 

  5. KDIGO 2017. Clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD-MBD). Kidney Int Suppl. 2017;7:1–59.

    Article  Google Scholar 

  6. Levey AS, Inker LA, Matsushita K, Greene T, Willis K, Lewis E, et al. GFR decline as an end point for clinical trials in CKD: a scientific workshop sponsored by the National Kidney Foundation and the US Food and Drug Administration. Am J Kidney Dis. 2014;64:821–35.

    Article  PubMed  Google Scholar 

  7. Chang WX, Asakawa S, Toyoki D, Nemoto Y, Morimoto C, Tamura Y, et al. Predictors and the subsequent risk of end-stage renal disease – usefulness of 30% decline in estimated GFR over 2 years. PLoS One. 2015;10:e0132927.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298:2038–47.

    Article  CAS  PubMed  Google Scholar 

  9. U.S. Renal Data System. Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2008. USRDS 2015 Annual Data Report. http://www.usrds.org/adr.aspx.

    Google Scholar 

  10. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39:S1–266.

    Google Scholar 

  11. Tangri N, Grams ME, Levey AS, Coresh J, Appel LJ, Astor BC, et al. Multinational assessment of accuracy of equations for predicting risk of kidney failure: a meta-analysis. JAMA. 2016;315:164–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Young TI. The Croonian lecture. On the functions of the heart and arteries. Phil Trans R Soc Lond. 1809;1:1–31.

    Article  Google Scholar 

  13. Bright R. Tabular view of the morbid appearances in 100 cases connected with albuminous urine: with observations. Guys Hosp Rep. 1836;1:380–400.

    Google Scholar 

  14. Volhard F, Fahr T. Die Brightsche Nierenkrankheit. Klinik, Pathologie und Atlas. Berlin: Springer; 1914.

    Book  Google Scholar 

  15. Heidland A, Gerabek W, Sebekova K. Franz Volhard and Theodor Fahr: achievements and controversies in their research in renal disease and hypertension. J Hum Hypertens. 2001;15:5–16.

    Article  CAS  PubMed  Google Scholar 

  16. Hall JE, Granger JP, do Carmo JM, da Silva AA, Dubinion J, George E, et al. Hypertension: physiology and pathophysiology. Compr Physiol. 2012;2:2393–442.

    PubMed  Google Scholar 

  17. Majid DS, Prieto MC, Navar LG. Salt-sensitive hypertension: perspectives on intrarenal mechanisms. Curr Hypertens Rev. 2015;11:38–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ortiz PA, Garvin JL. Intrarenal transport and vasoactive substances in hypertension. Hypertension. 2001;38:621–4.

    Article  CAS  PubMed  Google Scholar 

  19. LaPointe MS, Sodhi C, Sahai A, Batlle D. Na+/H+ exchange activity and NHE-3 expression in renal tubules from the spontaneously hypertensive rat. Kidney Int. 2002;62:157–65.

    Article  CAS  PubMed  Google Scholar 

  20. Sonalker PA, Tofovic SP, Jackson EK. Cellular distribution of the renal bumetanide-sensitive Na-K-2Cl cotransporter BSC-1 in the inner stripe of the outer medulla during the development of hypertension in the spontaneously hypertensive rat. Clin Exp Pharmacol Physiol. 2007;34:1307–12.

    Article  CAS  PubMed  Google Scholar 

  21. Liu J, Yan Y, Liu L, Xie Z, Malhotra D, Joe B, et al. Impairment of Na/K-ATPase signaling in renal proximal tubule contributes to Dahl salt-sensitive hypertension. J Biol Chem. 2011;286:22806–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roman RJ, Kaldunski ML. Enhanced chloride reabsorption in the loop of Henle in Dahl salt-sensitive rats. Hypertension. 1991;17:1018–24.

    Article  CAS  PubMed  Google Scholar 

  23. Ferrandi M, Salardi S, Parenti P, Ferrari P, Bianchi G, Braw R, et al. Na+/K+/Cl(−)-cotransporter mediated Rb+ fluxes in membrane vesicles from kidneys of normotensive and hypertensive rats. Biochim Biophys Acta. 1990;1021:13–20.

    Article  CAS  PubMed  Google Scholar 

  24. Yagil Y, Mekler J, Wald H, Popovtzer MM, Ben-Ishay D. Sodium handling by the Sabra hypertension prone (SBH) and resistant (SBN) rats. Pflugers Arch. 1986;407:547–51.

    Article  CAS  PubMed  Google Scholar 

  25. Miao CY, Liu KL, Benzoni D, Sassard J. Acute pressure-natriuresis function shows early impairment in Lyon hypertensive rats. J Hypertens. 2005;23:1225–31.

    Article  CAS  PubMed  Google Scholar 

  26. Aviv A, Hollenberg NK, Weder A. Urinary potassium excretion and sodium sensitivity in blacks. Hypertension. 2004;43:707–13.

    Article  CAS  PubMed  Google Scholar 

  27. Chiolero A, Maillard M, Nussberger J, Brunner HR, Burnier M. Proximal sodium reabsorption: an independent determinant of blood pressure response to salt. Hypertension. 2000;36:631–7.

    Article  CAS  PubMed  Google Scholar 

  28. Doris PA. Promoting regulatory gene variation in sodium reabsorption. Hypertension. 2008;52:623–4.

    Article  CAS  PubMed  Google Scholar 

  29. Strazzullo P, Galletti F, Barba G. Altered renal handling of sodium in human hypertension: short review of the evidence. Hypertension. 2003;41:1000–5.

    Article  CAS  PubMed  Google Scholar 

  30. Lifton RP, Wilson FH, Choate KA, Geller DS. Salt and blood pressure: new insight from human genetic studies. Cold Spring Harb Symp Quant Biol. 2002;67:445–50.

    Article  CAS  PubMed  Google Scholar 

  31. Bianchi G, Fox U, Di Francesco GF, Giovanetti AM, Pagetti D. Blood pressure changes produced by kidney cross-transplantation between spontaneously hypertensive rats and normotensive rats. Clin Sci Mol Med. 1974;47:435–48.

    CAS  PubMed  Google Scholar 

  32. Morgan DA, DiBona GF, Mark AL. Effects of interstrain renal transplantation on NaCl-induced hypertension in Dahl rats. Hypertension. 1990;5:436–42.

    Article  Google Scholar 

  33. Churchill PC, Churchill MC, Bidani AK, Kurtz TW. Kidney-specific chromosome transfer in genetic hypertension: the Dahl hypothesis revisited. Kidney Int. 2001;60:705–14.

    Article  CAS  PubMed  Google Scholar 

  34. Dahl LK, Heine M, Thompson K. Genetic influence of the kidneys on blood pressure. Evidence from chronic renal homografts in rats with opposite predispositions to hypertension. Circ Res. 1974;40:94–101.

    Article  Google Scholar 

  35. Frey BA, Grisk O, Bandelow N, Wussow S, Bie P, Rettig R. Sodium homeostasis in transplanted rats with a spontaneously hypertensive rat kidney. Am J Physiol Regul Integr Comp Physiol. 2000;279:R10991104.

    Article  Google Scholar 

  36. Calhoun DA, Zhu S, Wyss JM, Oparil S. Diurnal blood pressure variation and dietary salt in spontaneously hypertensive rats. Hypertension. 1994;24:1–7.

    Article  CAS  PubMed  Google Scholar 

  37. Ely DE, Thorén P, Wiegand J, Folkow B. Sodium appetite as well as 24-h variations of fluid balance, mean arterial pressure and heart rate in spontaneously hypertensive (SHR) and normotensive (WKY) rats, when on various sodium diets. Acta Physiol Scand. 1987;129:81–92.

    Article  CAS  PubMed  Google Scholar 

  38. Sander S, Rettig R, Ehrig B. Role of the native kidney in experimental post transplantation hypertension. Pflugers Arch. 1996;431:971–6.

    Article  CAS  PubMed  Google Scholar 

  39. Grisk O, Frey BAJ, Uber A, Rettig R. Sympathetic activity in early renal posttransplantation hypertension in rats. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1737–44.

    Article  CAS  PubMed  Google Scholar 

  40. Grisk O, Rose HJ, Lorenz G, Rettig R. Sympathetic renal interaction in chronic arterial pressure control. Am J Physiol Regul Integr Comp Physiol. 2002;283:R441–50.

    Article  CAS  PubMed  Google Scholar 

  41. Crowley SD, Coffman TM. In hypertension, the kidney breaks your heart. Curr Cardiol Rep. 2008;10:470–6.

    Article  PubMed  Google Scholar 

  42. Crowley SD, Gurley SB, Herrera MJ, Ruiz P, Griffiths R, Kumar AP, et al. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci U S A. 2006;103:17985–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Asico L, Zhang X, Jiang J, Cabrera D, Escano CS, Sibley DR, et al. Lack of renal dopamine D5 receptors promotes hypertension. J Am Soc Nephrol. 2011;22:82–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Curtis JJ, Luke RG, Dustan HP, Kashgarian M, Whelchel JD, Jones P, et al. Remission of essential hypertension after renal transplantation. N Engl J Med. 1983;309:1009–15.

    Article  CAS  PubMed  Google Scholar 

  45. Guidi E, Menghetti D, Milani S, Montagnino G, Palazzi P, Bianchi G. Hypertension may be transplanted with the kidney in humans: a long-term historical prospective follow-up of recipients grafted with kidneys coming from donors with or without hypertension in their families. J Am Soc Nephrol. 1996;7:1131–8.

    CAS  PubMed  Google Scholar 

  46. Carlström M, Wilcox CS, Arendshorst WJ. Renal autoregulation in health and disease. Physiol Rev. 2015;95:405–511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Vavrinec P, Henning RH, Goris M, Landheer SW, Buikema H, van Dokkum RP. Renal myogenic constriction protects the kidney from age-related hypertensive renal damage in the Fawn-Hooded rat. J Hypertens. 2013;31:1637–45.

    Article  CAS  PubMed  Google Scholar 

  48. Vettoretti S, Ochodnicky P, Buikema H, Henning RH, Kluppel CA, de Zeeuw D, et al. Altered myogenic constriction and endothelium-derived hyperpolarizing factor-mediated relaxation in small mesenteric arteries of hypertensive subtotally nephrectomized rats. J Hypertens. 2006;24:2215–23.

    Article  CAS  PubMed  Google Scholar 

  49. Schofield I, Malik R, Izzard A, Austin C, Heagerty A. Vascular structural and functional changes in type 2 diabetes mellitus: evidence for the roles of abnormal myogenic responsiveness and dyslipidemia. Circulation. 2002;106:3037–43.

    Article  PubMed  Google Scholar 

  50. Rhaleb NE, Yang XP, Carretero OA. The kallikrein-kinin system as a regulator of cardiovascular and renal function. Compr Physiol. 2011;1:971–93.

    PubMed  PubMed Central  Google Scholar 

  51. Osborn JW, Fink GD, Kuroki MT. Neural mechanisms of angiotensin II-salt hypertension: implications for therapies targeting neural control of the splanchnic circulation. Curr Hypertens Rep. 2011;13:221–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. DiBona GF. Sympathetic nervous system and hypertension. Hypertension. 2013;61:556–60.

    Article  CAS  PubMed  Google Scholar 

  53. Young CN, Davisson RL. In vivo assessment of neurocardiovascular regulation in the mouse: principles, progress, and prospects. Am J Physiol Heart Circ Physiol. 2011;301:H654–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fernandez MM, Gonzalez D, Williams JM, Roman RJ, Nowicki S. Inhibitors of 20-hydroxyeicosatetraenoic acid (20-HETE) formation attenuate the natriuretic effect of dopamine. Eur J Pharmacol. 2012;686:97–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Speed JS, Fox BM, Johnston JG, Pollock DM. Endothelin and renal ion and water transport. Semin Nephrol. 2015;35:137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hyndman KA, Dugas C, Arguello AM, Goodchild TT, Buckley KM, Burch M, et al. High salt induces autocrine actions of ET-1 on inner medullary collecting duct NO production via upregulated ETB receptor expression. Am J Physiol Regul Integr Comp Physiol. 2016;311:R263–71.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kodavanti UP, Russell JC, Costa DL. Rat models of cardiometabolic diseases: baseline clinical chemistries, and rationale for their use in examining air pollution health effects. Inhal Toxicol. 2015;27(Suppl 1):2–13.

    Article  PubMed  Google Scholar 

  58. Watanabe Y, Yoshida M, Yamanishi K, Yamamoto H, Okuzaki D, Nojima H, et al. Genetic analysis of genes causing hypertension and stroke in spontaneously hypertensive rats: gene expression profiles in the kidneys. Int J Mol Med. 2015;36:712–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hultström M. Development of structural kidney damage in spontaneously hypertensive rats. J Hypertens. 2012;30:1087–91.

    Article  PubMed  CAS  Google Scholar 

  60. Eng E, Veniant M, Floege J, Fingerle J, Alpers CE, Menard J, et al. Renal proliferative and phenotypic changes in rats with two-kidney, one-clip Goldblatt hypertension. Am J Hypertens. 1994;7:177–85.

    Article  CAS  PubMed  Google Scholar 

  61. Gudbrandsen OA, Hultstrøm M, Leh S, Monica Bivol L, Vågnes Ø, Berge RK, et al. Prevention of hypertension and organ damage in 2-kidney, 1-clip rats by tetradecylthioacetic acid. Hypertension. 2006;48:460–6.

    Article  CAS  PubMed  Google Scholar 

  62. Skogstrand T, Leh S, Paliege A, Reed RK, Vikse BE, Bachmann S, et al. Arterial damage precedes the development of interstitial damage in the nonclipped kidney of two-kidney, one-clip hypertensive rats. J Hypertens. 2013;31:152–9.

    Article  CAS  PubMed  Google Scholar 

  63. Klag MJ, Whelton PK, Randall BL, Neaton JD, Brancati FL, Ford CE, et al. Blood pressure and end-stage renal disease in men. N Engl J Med. 1996;334:13–8.

    Article  CAS  PubMed  Google Scholar 

  64. Tozawa M, Iseki K, Iseki C, Kinjo K, Ikemiya Y, Takishita S. Blood pressure predicts risk of developing end-stage renal disease in men and women. Hypertension. 2003;41:1341–5.

    Article  CAS  PubMed  Google Scholar 

  65. Garofalo C, Borrelli S, Pacilio M, Minutolo R, Chiodini P, De Nicola L, et al. Hypertension and prehypertension and prediction of development of decreased estimated GFR in the general population: a meta-analysis of cohort studies. Am J Kidney Dis. 2016;67:89–97.

    Article  PubMed  Google Scholar 

  66. Eriksen BO, Stefansson VT, Jenssen TG, Mathisen UD, Schei J, Solbu MD, et al. Blood pressure and age-related GFR decline in the general population. BMC Nephrol. 2017;18(1):77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Eriksen BO, Stefansson VTN, Jenssen TG, Mathisen UD, Schei J, Solbu MD, et al. High ambulatory arterial stiffness index is an independent risk factor for rapid age-related glomerular filtration rate decline in the general middle-aged population. Hypertension. 2017;69:651–9.

    Article  CAS  PubMed  Google Scholar 

  68. Whelton PK, Klag MJ. Hypertension as a risk factor for renal disease. Review of clinical and epidemiological evidence. Hypertension. 1989;13(5 Suppl):I19–27.

    Article  CAS  PubMed  Google Scholar 

  69. Parsa A, Kao WH, Xie D, Astor BC, Li M, Hsu CY, et al. APOL1 risk variants, race, and progression of chronic kidney disease. N Engl J Med. 2013;369:2183–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Langefeld CD, Divers J, Pajewski NM, Hawfield AT, Reboussin DM, Bild DE, et al. Apolipoprotein L1 gene variants associate with prevalent kidney but not prevalent cardiovascular disease in the Systolic Blood Pressure Intervention Trial. Kidney Int. 2015;87:169–75.

    Article  CAS  PubMed  Google Scholar 

  71. Chen TK, Estrella MM, Vittinghoff E, Lin F, Gutierrez OM, Kramer H, et al. APOL1 genetic variants are not associated with longitudinal blood pressure in young black adults. Kidney Int. 2017;92(4):964–71. pii: S0085-2538(17)30231-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hoy WE, Kopp JB, Mott SA, Winkler CA. Absence of APOL1 risk alleles in a remote living Australian Aboriginal group with high rates of CKD, hypertension, diabetes, and cardiovascular disease. Kidney Int. 2017;91:990.

    Article  CAS  PubMed  Google Scholar 

  73. Chang J, Ma JZ, Zeng Q, Cechova S, Gantz A, Nievergelt C, et al. Loss of GSTM1, a NRF2 target, is associated with accelerated progression of hypertensive kidney disease in the African American Study of Kidney Disease (AASK). Am J Physiol Renal Physiol. 2013;304:F348–55.

    Article  CAS  PubMed  Google Scholar 

  74. Bodonyi-Kovacs G, Ma JZ, Chang J, Lipkowitz MS, Kopp JB, Winkler CA, et al. Combined effects of GSTM1 null allele and APOL1 renal risk alleles in CKD progression in the African American Study of Kidney Disease and Hypertension Trial. J Am Soc Nephrol. 2016;27:3140–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Salvador-González B, Mestre-Ferrer J, Soler-Vila M, Pascual-Benito L, Alonso-Bes E, Cunillera-Puértolas O, et al. Chronic kidney disease in hypertensive subjects ≥60 years treated in Primary Care. Nefrologia. 2017;37:406–14.

    Article  PubMed  Google Scholar 

  76. Gallibois CM, Jawa NA, Noone DG. Hypertension in pediatric patients with chronic kidney disease: management challenges. Int J Nephrol Renovasc Dis. 2017;10:205–13.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lv J, Ehteshami P, Sarnak MJ, Tighiouart H, Jun M, Ninomiya T, et al. Effects of intensive blood pressure lowering on the progression of chronic kidney disease: a systematic review and meta-analysis. CMAJ. 2013;185:949–57.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ku E, Gassman J, Appel LJ, Smogorzewski M, Sarnak MJ, Glidden DV, et al. BP control and long-term risk of ESRD and mortality. J Am Soc Nephrol. 2017;28:671–7.

    Article  CAS  PubMed  Google Scholar 

  79. Kovesdy CP, Lu JL, Molnar MZ, Ma JZ, Canada RB, Streja E, et al. Observational modeling of strict vs conventional blood pressure control in patients with chronic kidney disease. JAMA Intern Med. 2014;174:1442–9.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bansal N. Stricter systolic blood pressure control is associated with higher all-cause mortality in patients with chronic kidney disease. Evid Based Med. 2015;20:68.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Xie X, Atkins E, Lv J, Bennett A, Neal B, Ninomiya T, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet. 2016;387:435–43.

    Article  PubMed  Google Scholar 

  82. Burgner A, Lewis JB. Hypertension: is it time to reconsider blood pressure guidelines? Nat Rev Nephrol. 2014;10:620–1.

    Article  PubMed  Google Scholar 

  83. ESCAPE Trial Group, Wühl E, Trivelli A, Picca S, Litwin M, Peco-Antic A, et al. Strict blood-pressure control and progression of renal failure in children. N Engl J Med. 2009;361:1639–50.

    Article  Google Scholar 

  84. Hsu CY. Does non-malignant hypertension cause renal insufficiency? Evidence-based perspective. Curr Opin Nephrol Hypertens. 2002;11:267–72.

    Article  PubMed  Google Scholar 

  85. Freedman BI, Cohen AH. Hypertension-attributed nephropathy: what's in a name? Nat Rev Nephrol. 2016;12:27–36.

    Article  CAS  PubMed  Google Scholar 

  86. Meyrier A. Nephrosclerosis: a term in quest of a disease. Nephron. 2015;129:276–82.

    Article  CAS  PubMed  Google Scholar 

  87. Nishikimi T, Koshikawa S, Ishikawa Y, Akimoto K, Inaba C, Ishimura K, et al. Inhibition of Rho-kinase attenuates nephrosclerosis and improves survival in salt-loaded spontaneously hypertensive stroke-prone rats. J Hypertens. 2007;25:1053–63.

    Article  CAS  PubMed  Google Scholar 

  88. Gonick HC, Cohen AH, Ren Q, Saldanha LF, Khalil-Manesh F, Anzalone J, et al. Effect of 2,3-dimercaptosuccinic acid on nephrosclerosis in the Dahl rat. I. Role of reactive oxygen species. Kidney Int. 1996;50:1572–81.

    Article  CAS  PubMed  Google Scholar 

  89. Liao TD, Yang XP, Liu YH, Shesely EG, Cavasin MA, Kuziel WA, et al. Role of inflammation in the development of renal damage and dysfunction in angiotensin II-induced hypertension. Hypertension. 2008;52:256–63.

    Article  CAS  PubMed  Google Scholar 

  90. Sakata F, Ito Y, Mizuno M, Sawai A, Suzuki Y, Tomita T, et al. Sodium chloride promotes tissue inflammation via osmotic stimuli in subtotal-nephrectomized mice. Lab Investig. 2017;97:432–46.

    Article  CAS  PubMed  Google Scholar 

  91. Amara S, Ivy MT, Myles EL, Tiriveedhi V. Sodium channel γENaC mediates IL-17 synergized high salt induced inflammatory stress in breast cancer cells. Cell Immunol. 2016;302:1–10.

    Article  CAS  PubMed  Google Scholar 

  92. Yan SH, Zhao NW, Jiang WM, Wang XT, Zhang SQ, Zhu XX, et al. Hsp90β is involved in the development of high salt-diet-induced nephropathy via interaction with various signalling proteins. Hsp90β is involved in the development of high salt-diet-induced nephropathy via interaction with various signalling proteins. Open Biol. 2016;6:150159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Hernandez AL, Kitz A, Wu C, Lowther DE, Rodriguez DM, Vudattu N, et al. Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells. J Clin Invest. 2015;125:4212–22.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Binger KJ, Gebhardt M, Heinig M, Rintisch C, Schroeder A, Neuhofer W, et al. High salt reduces the activation of IL-4- and IL-13-stimulated macrophages. J Clin Invest. 2015;125:4223–38.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wade B, Abais-Battad JM, Mattson DL. Role of immune cells in salt-sensitive hypertension and renal injury. Curr Opin Nephrol Hypertens. 2016;25:22–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Srivastava A, Singh A, Singh SS, Mishra AK. Salt stress-induced changes in antioxidative defense system and proteome profiles of salt-tolerant and sensitive Frankia strains. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2017;52:420–8.

    Article  CAS  PubMed  Google Scholar 

  97. Leibowitz A, Volkov A, Voloshin K, Shemesh C, Barshack I, Grossman E. Melatonin prevents kidney injury in a high salt diet-induced hypertension model by decreasing oxidative stress. J Pineal Res. 2016;60:48–54.

    Article  CAS  PubMed  Google Scholar 

  98. Liu X, Wang W, Chen W, Jiang X, Zhang Y, Wang Z, et al. Regulation of blood pressure, oxidative stress and AT1R by high salt diet in mutant human dopamine D5 receptor transgenic mice. Hypertens Res. 2015;38:394–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lai EY, Luo Z, Onozato ML, Rudolph EH, Solis G, Jose PA, et al. Effects of the antioxidant drug tempol on renal oxygenation in mice with reduced renal mass. Am J Physiol Renal Physiol. 2012;303:F64–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wong MM, Arcand J, Leung AA, Raj TS, Trieu K, Santos JA, et al. The science of salt: a regularly updated systematic review of salt and health outcomes (August to November 2015). J Clin Hypertens (Greenwich). 2016;18:1054–62.

    Article  Google Scholar 

  101. McMahon EJ, Campbell KL, Bauer JD, Mudge DW. Altered dietary salt intake for people with chronic kidney disease. Cochrane Database Syst Rev. 2015;18:CD010070.

    Google Scholar 

  102. Mahajan A, Rodan AR, Le TH, Gaulton KJ, Haessler J, Stilp AM, et al. Trans-ethnic fine mapping highlights kidney-function genes linked to salt sensitivity. Am J Hum Genet. 2016;99:636–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ahn SY, Kim S, Kim DK, Park JH, Shin SJ, Lee SH, et al. Urinary sodium excretion has positive correlation with activation of urinary renin angiotensin system and reactive oxygen species in hypertensive chronic kidney disease. J Korean Med Sci. 2014;29(Suppl 2):S123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet S, et al. Inflammation, immunity, and hypertension. Hypertension. 2011;57:132–40.

    Article  CAS  PubMed  Google Scholar 

  105. Guzik TJ, Touyz RM. Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension. 2017; pii: HYPERTENSIONAHA.117.07802.

    Google Scholar 

  106. Cuevas S, Villar VA, Jose PA, Armando I. Renal dopamine receptors, oxidative stress, and hypertension. Int J Mol Sci. 2013;14:17553–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Banday AA, Lokhandwala MF. Oxidative stress causes renal angiotensin II type 1 receptor upregulation, Na+/H+ exchanger 3 overstimulation, and hypertension. Hypertension. 2011;57:452–9.

    Article  CAS  PubMed  Google Scholar 

  108. Loperena R, Harrison DG. Oxidative stress and hypertensive diseases. Med Clin North Am. 2017;101:169–93.

    Article  PubMed  Google Scholar 

  109. Vlassara H, Torreggiani M, Post JB, Zheng F, Uribarri J, Striker GE. Role of oxidants/inflammation in declining renal function in chronic kidney disease and normal aging. Kidney Int Suppl. 2009;2009:S3–S11.

    Article  CAS  Google Scholar 

  110. Frame AA, Wainford RD. Renal sodium handling and sodium sensitivity. Kidney Res Clin Pract. 2017;36(2):117–31.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Foss JD, Kirabo A, Harrison DG. Do high-salt microenvironments drive hypertensive inflammation? Am J Physiol Regul Integr Comp Physiol. 2017;312(1):R1–4.

    Article  PubMed  Google Scholar 

  112. Kanbay M, Segal M, Afsar B, Kang DH, Rodriguez-Iturbe B, Johnson RJ. The role of uric acid in the pathogenesis of human cardiovascular disease. Heart. 2013;99(11):759–66.

    Article  CAS  PubMed  Google Scholar 

  113. Yang BY, Qian ZM, Vaughn MG, Nelson EJ, Dharmage SC, Heinrich J, et al. Is prehypertension more strongly associated with long-term ambient air pollution exposure than hypertension? Findings from the 33 Communities Chinese Health Study. Environ Pollut. 2017;229:696–704.

    Article  CAS  PubMed  Google Scholar 

  114. Xu X, Wang G, Chen N, Lu T, Nie S, Xu G, et al. Long-term exposure to air pollution and increased risk of membranous nephropathy in China. J Am Soc Nephrol. 2016;27(12):3739–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lipfert FW. Long-term associations of morbidity with air pollution: a catalogue and synthesis. J Air Waste Manag Assoc. 2018;68:12–28.

    Article  CAS  Google Scholar 

  116. Al Suleimani YM, Al Mahruqi AS, Al Za'abi M, Shalaby A, Ashique M, Nemmar A, et al. Effect of diesel exhaust particles on renal vascular responses in rats with chronic kidney disease. Environ Toxicol. 2017;32:541–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported, in part, by grants from the National Institutes of Health: HL023081, HL092196, HL068686, HL068686, and DK039308.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro A. Jose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jose, P.A., Villar, V.A.M. (2019). Chronic Kidney Disease and Hypertension. In: Papademetriou, V., Andreadis, E., Geladari, C. (eds) Management of Hypertension. Springer, Cham. https://doi.org/10.1007/978-3-319-92946-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92946-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92945-3

  • Online ISBN: 978-3-319-92946-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics