Skip to main content

Management of Hypertension in Diabetes Mellitus

  • Chapter
  • First Online:
Management of Hypertension
  • 1127 Accesses

Abstract

Diabetes mellitus is a progressive metabolic disease with severe macrovascular (coronary artery disease, heart failure, stroke, peripheral artery disease) and microvascular (nephropathy, retinopathy) complications. Diabetes mellitus is associated with a two-fold to three-fold increased risk for cardiovascular events and is the leading cause of chronic kidney disease with almost half of end-stage renal disease cases being attributed to diabetes [1, 2]. The prevalence of type 2 diabetes mellitus increased dramatically during the last decades reaching epidemic dimensions, with even more disappointing projections for the near future [3, 4]. This increase in incidence around most of the world is primarily due to the increase in global obesity. The findings of two recent studies generate even greater concerns. The incidence of both type 1 and type 2 diabetes increased significantly among youths in the US during the last decade, especially in minority populations [5]. Moreover, a large Swedish Registry revealed that although mortality and cardiovascular morbidity declined significantly during the last decade, fatal outcomes declined significantly less in diabetic compared to control individuals [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stamler J, Vaccaro O, Neaton JD, et al. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993;16:434–44.

    Article  CAS  Google Scholar 

  2. White SL, Chadban SJ, Jan S, et al. How can we achieve global equity in provision of renal replacement therapy? Bull World Health Organ. 2008;86:229–37.

    Article  Google Scholar 

  3. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates on the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94:311–21.

    Article  Google Scholar 

  4. Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modelling of incidence, mortality, and prediabetes prevalence. Popul Health Metr. 2010;8:29.

    Article  Google Scholar 

  5. Mayer-Davis EJ, Lawrence JM, Dabelea D, et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. N Engl J Med. 2017;376:1419–29.

    Article  Google Scholar 

  6. Rawshani A, Rawshani A, Franzen S, et al. Mortality and cardiovascular disease in type 1 and type 2 diabetes. New Engl J Med. 2017;376:1407–18.

    Article  Google Scholar 

  7. Kearney PM, Whelton M, Reynolds K, et al. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217–23.

    Article  Google Scholar 

  8. Lewington S, Clarke R, Qizibash N, Peto R, Collins R. Age specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.

    Article  Google Scholar 

  9. American Diabetes Association. Cardiovascular disease and risk management. Diabetes Care. 2017;40:S75–87.

    Article  Google Scholar 

  10. de Boer I, Bangalore S, Benetos A, et al. Diabetes and hypertension: a position statement by the American Diabetes Association. Diabetes Care. 2017;40:1273–84.

    Article  Google Scholar 

  11. Gradman AH, Basile JN, Carter BL, Bakris GL. Combination therapy in hypertension. J Clin Hypertens. 2011;13:146–54.

    Article  Google Scholar 

  12. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311:507–20.

    Article  CAS  Google Scholar 

  13. Whelton PKCR, Aronow WS, Casey DE Jr, Collins KJ, Dennison- Himmelfarb C, DePalma SM, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association and Task Force on Clinical Practice guidelines. Hypertension. 2018;71:1269–324.

    Google Scholar 

  14. 2018 European Guidelines for the treatment of high blood pressure. In 2018. https://academic.oup.com/eurheartj/article/39/11/908/4934765. Accessed July 15, 2018.

  15. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ. 1998;317:703–13.

    Article  Google Scholar 

  16. The ACCORD Study Group. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575–85.

    Article  Google Scholar 

  17. Margolis KL, O’Connor PJ, Morgan TM, et al. Outcomes of combined cardiovascular risk factor management strategies in type 2 diabetes: the ACCORD randomized trial. Diabetes Care. 2014;37:1721–8.

    Article  CAS  Google Scholar 

  18. ADVANCE Collaborative Group. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet. 2007;37:829–40.

    Google Scholar 

  19. Estacio RO, Jeffers BW, Gifford N, Schrier RW. Effect of blood pressure control on diabetic microvascular complications in patients with hypertension and type 2 diabetes. Diabetes Care. 2000;23:B54–64.

    PubMed  Google Scholar 

  20. Hansson L, Zanchetti A, Carruthers SG, Dahlof B, Elmfeldt D, Julius S, et al. Effects of intensive blood pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group Lancet. 1998;351:1755–62.

    CAS  Google Scholar 

  21. Schrier RW, Estacio RO, Esler A, Mehler P. Effects of aggressive blood pressure control in normotensive type 2 diabetic patients on albuminuria, retinopathy and strokes. Kidney Int. 2002;61:1086–97.

    Article  Google Scholar 

  22. Curb JD, Pressel SL, Cutler JA, Savage PJ, Applegate WB, Black H, et al. Systolic Hypertension in the Elderly Program Cooperative Research Group. Effect of diuretic-based antihypertensive treatment on cardiovascular disease risk in older diabetic patients with isolated systolic hypertension. JAMA. 1996;276:1886–92.

    Article  CAS  Google Scholar 

  23. Tuomilehto J, Rastenyte D, Birkenhäger WH, Thijs L, Antikainen R, Bulpitt CJ, et al. Effects of calcium-channel blockade in older patients with diabetes and systolic hypertension. N Engl J Med. 1999;340:677–84.

    Article  CAS  Google Scholar 

  24. Berthet K, Neal BC, Chalmers JP, MacMahon SW, Bousser M-G, Colman SA, et al. Reductions in the risks of recurrent stroke in patients with and without diabetes: the PROGRESS trial. Blood Press. 2004;13:7–13.

    Article  Google Scholar 

  25. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9.

    Article  CAS  Google Scholar 

  26. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345:851–60.

    Article  CAS  Google Scholar 

  27. Arguedas JA, Leiva V, Wright JM. Blood pressure targets for hypertension in people with diabetes mellitus. Cochrane Database Syst Rev. 2013;10:CD008277.

    Google Scholar 

  28. Bangalore S, Kumar S, Lobach I, Messerli FH. Blood pressure targets in subjects with type 2 diabetes mellitus/impaired fasting glucose: observations from traditional and bayesian random-effects meta-analyses of randomized trials. Circulation. 2011;123:2799–810.

    Article  CAS  Google Scholar 

  29. Emdin CA, Rahimi K, Neal B, Callender T, Perkovic V, Patel A. Blood pressure lowering in type 2 diabetes. A systematic review and meta-analysis. JAMA. 2015;313:603–15.

    Article  Google Scholar 

  30. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering treatment on outcome incidence in hypertension: 10 – should blood pressure management differ in hypertensive patients with and without diabetes mellitus? Overview and meta-analyses of randomized trials. J Hypertens. 2017;35:922–44.

    Article  CAS  Google Scholar 

  31. Remonti LR, Dias S, Leitao CB, et al. Classes of antihypertensive agents and mortality in hypertensive patients with type 2 diabetes–network meta-analysis of randomized trials. J Diabetes Complicat. 2016;30:1192–200.

    Article  Google Scholar 

  32. Brunström M, Carlberg B. Effect of antihypertensive treatment at different blood pressure levels in patients with diabetes mellitus: systematic review and meta-analyses. BMJ. 2016;352:i717.

    Article  Google Scholar 

  33. Dojki FK, Bakris G. Blood pressure goals in T2DM – time for a rethink? Nat Rev Endocrinol. 2016;12:629–30.

    Article  CAS  Google Scholar 

  34. Glassock RJ, Bakris G. Impact of blood pressure lowering in type 2 diabetes. Nat Rev Nephrol. 2015;11:320–1.

    Article  CAS  Google Scholar 

  35. Laffin LJ, Bakris G. Update on blood pressure goals in diabetes mellitus. Curr Cardiol Rep. 2015;17:37.

    Article  Google Scholar 

  36. Yamout H, Bakris G. In search for the ‘sweet spot’ for blood pressure level in diabetes. Heart. 2014;100:1404–5.

    Article  Google Scholar 

  37. Sternlicht H, Bakris G. Management of hypertension in diabetic nephropathy: how low should we go? Blood Purif. 2016;41:139–43.

    Article  CAS  Google Scholar 

  38. Patney V, Whaley-Connell A, Bakris G. Hypertension management in diabetic kidney disease. Diabetes Spectr. 2015;28:175–80.

    Article  Google Scholar 

  39. Yamout H, Lazich I, Bakris G. Blood pressure, hypertension, RAAS blockade, and drug therapy in diabetic kidney disease. Adv Chronic Kidney Dis. 2014;21:281–6.

    Article  Google Scholar 

  40. Vasan RS, Larson MG, Leip EP, Kannel WB, Levy D. Assessment of frequency of progression to hypertension in non-hypertensive participants in the Framingham Heart Study: a cohort study. Lancet. 2001;358:1682–6.

    Article  CAS  Google Scholar 

  41. Doumas M, Katsiki N, Mikhailidis D. Prehypertension, the risk of hypertension, and events. (in press).

    Google Scholar 

  42. Guo X, Zhang X, Guo L, Li Z, Zheng L, Yu S, Yang H, Zhou X, Zhang X, Sun Z, Li J, Sun Y. Association between pre-hypertension and cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Curr Hypertens Rep. 2013;15:703–16.

    Article  CAS  Google Scholar 

  43. Li Y, Xia P, Xu L, Wang Y, Chen L. A meta-analysis on prehypertension and chronic kidney disease. PLoS One. 2016;11:e0156575.

    Article  Google Scholar 

  44. Huang Y, Su L, Cai X, Mai W, Wang S, Hu Y, Wu Y, Tang H, Xu D. Association of all-cause and cardiovascular mortality with prehypertension: a meta-analysis. Am Heart J. 2014;167:160–8.

    Article  Google Scholar 

  45. Wang S, Wu H, Zhang Q, Xu J, Fan Y. Impact of baseline prehypertension on cardiovascular events and all-cause mortality in the general population: a meta-analysis of prospective cohort studies. Int J Cardiol. 2013;168:4857–60.

    Article  Google Scholar 

  46. Bangalore S, Messerli FH, Wun CC, et al. J-curve revisited: an analysis of blood pressure and cardiovascular events in the Treating to New Targets (TNT) trial. Eur Heart J. 2010;31:2897–908.

    Article  CAS  Google Scholar 

  47. Kjeldsen SE, Berge E, Bangalore S, et al. No evidence for a J-shaped curve in treated hypertensive patients with increased cardiovascular risk: the VALUE trial. Blood Press. 2016;25:83–92.

    Article  Google Scholar 

  48. Weber MA, Bloch M, Bakris GL, et al. Cardiovascular outcomes according to systolic blood pressure in patients with and without diabetes: an ACCOMPLISH substudy. J Clin Hypertens. 2016;18:299–307.

    Article  CAS  Google Scholar 

  49. Adamsson Eryd S, Gudbjornsdottir S, Manhem K, et al. Blood pressure and complications in individuals with type 2 diabetes and no previous cardiovascular disease: national population based cohort study. BMJ. 2016;354:14070.

    Google Scholar 

  50. Adler AI, Stratton IM, Neil HA, et al. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ. 2000;321:412–9.

    Article  CAS  Google Scholar 

  51. Xie X, Atkins E, Lv J, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet. 2016;387:435–43.

    Article  Google Scholar 

  52. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387:957–67.

    Article  Google Scholar 

  53. The SPRINT Research Group. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373:2103–16.

    Article  Google Scholar 

  54. Bress A, Beddhu S, King J, et al. Intensive blood pressure control reduces cardiovascular events in patients with prediabetes. Presented at: American Diabetes Association 77th Scientific Sessions; June 9–13, 2017; San Diego, CA. Abstract 212-LB.

    Google Scholar 

  55. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993;329:1456–62.

    Article  CAS  Google Scholar 

  56. Weber MA, Bakris GL, Jamerson K, Weir M, Kjeldsen SE, Devereux RB, et al. Cardiovascular events during differing hypertension therapies in patients with diabetes. J Am Coll Cardiol. 2010;56:77–85.

    Article  CAS  Google Scholar 

  57. Manolis A, Doumas M. Erectile function in cardiovascular disease and hypertension: the role of nebivolol. J Hypertens. 2016;5:226.

    Article  Google Scholar 

  58. Bakris GL, Fonseca V, Katholi RE, et al. Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension: a randomized controlled trial. JAMA. 2004;292:2227–36.

    Article  CAS  Google Scholar 

  59. Jamerson K, Weber MA, Bakris GL, Dahlöf B, Pitt B, Shi V, et al. Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. N Engl J Med. 2008;359:2417–28.

    Article  CAS  Google Scholar 

  60. Bakris GL, Sarafidis PA, Weir MR, et al. Renal outcomes with different fixed-dose combination therapies in patients with hypertension at high risk for cardiovascular events (ACCOMPLISH): a prespecified secondary analysis of a randomized controlled trial. Lancet. 2010;375:1173–81.

    Article  CAS  Google Scholar 

  61. ONTARGET Investigators. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358:1547–59.

    Article  Google Scholar 

  62. Fried LF, Emanuele N, Zhang JH, et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med. 2013;369:1892–903.

    Article  CAS  Google Scholar 

  63. Mann J, Schmieder R, McQueen M, et al. Renal outcomes with telmisartan, ramipril or both in people at high vascular risk (the ONTARGET study): a multicentre, randomized, double-blind, controlled trial. Lancet. 2008;372:547–53.

    Article  CAS  Google Scholar 

  64. ALTITUDE Investigators. Cardiorenal endpoints in a trial of aliskiren for type 2 diabetes. N Engl J Med. 2012;367:2204–13.

    Article  Google Scholar 

  65. Bangalore S, Kamalakkannan G, Parkar S, Messerli FH. Fixed-dose combinations improve medication compliance. Am J Med. 2007;120:713–9.

    Article  Google Scholar 

  66. Mazzaglia G, Ambrosioni E, Alacqua M, et al. Adherence to antihypertensive medications and cardiovascular morbidity among newly diagnosed hypertensive patients. Circulation. 2009;120:1598–605.

    Article  CAS  Google Scholar 

  67. Chowdhury R, Khan H, Heydon E, et al. Adherence to cardiovascular therapy: a meta-analysis of prevalence and clinical consequences. Eur Heart J. 2013;34:2940–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George L. Bakris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Doumas, M., Bakris, G.L. (2019). Management of Hypertension in Diabetes Mellitus. In: Papademetriou, V., Andreadis, E., Geladari, C. (eds) Management of Hypertension. Springer, Cham. https://doi.org/10.1007/978-3-319-92946-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92946-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92945-3

  • Online ISBN: 978-3-319-92946-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics