Skip to main content

Processing, Production Methods and Characterization of Bio-Based Packaging Materials

  • Chapter
  • First Online:
Lignocellulosic Materials and Their Use in Bio-based Packaging

Abstract

One of the challenges of using bio-based materials for the development and production of packaging is the scale-up of the production process. The industrial technology used is widely influenced by the thermal properties of the materials used (in the case of “dry process”), however for some materials only the “wet process” is suitable in order to obtain good packaging materials. Additionally, the use of lignocellulosic materials as main materials or as fillers/additives is a great challenge and their compatibility with other bio-based materials must be studied case-by-case, according to the material and its main characteristics. The characteristics of the materials used and the production method will influence not only the thermal, mechanical and barrier properties of the packaging but also its optical properties, the solubility of the films and wettability of the coatings. This chapter presents the main processing conditions and methods for the production of bio-based packaging using lignocellulosic materials. The most important properties and characterization methodologies are also presented, and in the end, the biodegradability and life cycle of bio-based packaging materials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aadil KR, Prajapati D, Jha H (2016) Improvement of physcio-chemical and functional properties of alginate film by Acacia lignin. Food Pack Shelf Life 10:25–33

    Article  Google Scholar 

  • Abdel Ghaffar AM, Ali HE (2016) Radiation modification of the properties of polypropylene/carboxymethyl cellulose blends and their biodegradability. B Mater Sci 39(7):1809–1817

    Article  CAS  Google Scholar 

  • Abdollahi M, Alboofetileh M, Rezaei M, Behrooz R (2013) Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocolloid 32(2):416–424

    Article  CAS  Google Scholar 

  • Agarwal A, Raheja A, Natarajan TS, Chandra TS (2014) Effect of electrospun montmorillonite-nylon 6 nanofibrous membrane coated packaging on potato chips and bread. Innov Food Sci Emerg 26:424–430

    Article  CAS  Google Scholar 

  • Álvarez-Chávez CR, Edwards S, Moure-Eraso R, Geiser K (2012) Sustainability of bio-based plastics: General comparative analysis and recommendations for improvement. J Clean Prod 23(1):47–56

    Article  CAS  Google Scholar 

  • Amcor (2016) Products Ceramis®—PLA. Retrieved from https://www.amcor.com/products_services/ceramis_biodegradable_films/. Accessed on 18 Dec 2016

  • Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253

    Article  CAS  Google Scholar 

  • Baumberger S, Lapierre C, Monties B, Lourdin D, Colonna P (1997) Preparation and properties of thermally moulded and cast lignosulfonates-starch blends. Ind Crop Prod 6(3–4):253–258

    Article  CAS  Google Scholar 

  • Bravin B, Peressini D, Sensidoni A (2006) Development and application of polysaccharide–lipid edible coating to extend shelf-life of dry bakery products. J Food Eng 76:280–290

    Article  CAS  Google Scholar 

  • Cerqueira MA, Fabra MJ, Castro-Mayorga JL, Bourbon AI, Pastrana LM, Vicente AA, Lagaron JM (2016) Use of electrospinning to develop antimicrobial biodegradable multilayer systems: encapsulation of cinnamaldehyde and their physicochemical characterization. Food Bioprocess Technol 9(11):1874–1884

    Article  CAS  Google Scholar 

  • Cerqueira MA, Souza BWS, Teixeira JA, Vicente AA (2012) Effect of glycerol and corn oil on physicochemical properties of polysaccharide films: a comparative study. Food Hydrocolloid 27(1):175–184

    Article  CAS  Google Scholar 

  • Chen P, Zhang L, Peng S, Liao B (2006) Effects of nanoscale hydroxypropyl lignin on properties of soy protein plastics. J Appl Polym Sci 101(1):334–341

    Article  CAS  Google Scholar 

  • Choi WY, Park HJ, Ahn DJ, Lee J, Lee CY (2002) Wettability of chitosan coating solution on ‘Fuji’ apple skin. J Food Sci 67(7):2668–2672

    Article  CAS  Google Scholar 

  • Crouvisier-Urion K, Bodart PR, Winckler P, Raya J, Gougeon RD, Cayot P, Domenek S, Debeaufort F, Karbowiak T (2016) Biobased composite films from chitosan and lignin: Antioxidant activity related to structure and moisture. ACS Sustainable Chem Eng. 4(12):6371–6381

    Article  CAS  Google Scholar 

  • Emadian SM, Onay TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manage 59:526–536

    Article  CAS  Google Scholar 

  • EPA USEPA (2017) Design for the environment life-cycle assessments. Retrieved from https://www.epa.gov/saferchoice/design-environment-life-cycle-assessments. Accessed on 4 Jan 2017

  • Explore tpffd (2016) Micro cast film line: Small scale, reliable and cost-effective polymer film screening. http://www.xplore-together.com/products/micro-cast-film-lines. Accessed Dec 20 2016

  • Fabra MJ, Busolo MA, Lopez-Rubio A, Lagaron JM (2013) Nanostructured biolayers in food packaging. Trends Food Sci Tech. 31(1):79–87

    Article  CAS  Google Scholar 

  • Fabra MJ, López-Rubio A, Lagaron J (2016) Nanostructured multilayers for food packaging by electrohydrodynamic processing. In: Cerqueira MA, Pereira RN, Ramos OL, Teixeira JA, Vicente AA (eds) Edible food packaging: Materials and processing technologies. Contemporary Food Engineering. CRC Press, Taylor & Francis group, New York, USA, pp 319–332

    Chapter  Google Scholar 

  • Fakhouri FM, Costa D, Yamashita F, Martelli SM, Jesus RC, Alganer K, Collares-Queiroz FP, Innocentini-Mei LH (2013) Comparative study of processing methods for starch/gelatin films. Carbohyd Polym 95(2):681–689

    Article  CAS  Google Scholar 

  • Garcia MA, Martino MN, Zaritzky NE (2000) Lipid addition to improve barrier properties of edible starch-based films and coatings. J Food Sci 65:941–947

    Article  CAS  Google Scholar 

  • Garrido T, Etxabide A, Guerrero P, Caba K (2016) Characterization of agar/soy protein biocomposite films: Effect of agar on the extruded pellets and compression moulded films. Carbohyd Polym 151:408–416

    Article  CAS  Google Scholar 

  • George SC, Thomas S (2001) Transport phenomena through polymeric systems. Prog Polym Sci 26(6):985–1017

    Article  CAS  Google Scholar 

  • Gómez EF, Michel FC Jr (2013) Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation. Polym Degrad Stabil. 98(12):2583–2591

    Article  CAS  Google Scholar 

  • Herrera N, Mathew AP, Oksman K (2015) Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: Mechanical, thermal and optical properties. Compos Sci Technol. 106:149–155

    Article  CAS  Google Scholar 

  • Jang W-S, Rawson I, Grunlan JC (2008) Layer-by-layer assembly of thin film oxygen barrier. Thin Solid Films 516(15):4819–4825

    Article  CAS  Google Scholar 

  • Jyotishkumar P, Thomas S, Grohens Y (2014) Polymer blends: State of the art, new challenges, and opportunities. In: Thomas S, Grohens Y, Jyotishkumar P (eds) Characterization of polymer blends: Miscibility, morphology and interfaces. Wiley-VCH Verlag GmbH & Co, KGaA, pp 1–6

    Google Scholar 

  • Kovalcik A, Machovsky M, Kozakova Z, Koller M (2015) Designing packaging materials with viscoelastic and gas barrier properties by optimized processing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with lignin. React Funct Polym 94:25–34

    Article  CAS  Google Scholar 

  • Krochta JM (2002) Proteins as raw materials for films and coatings: Definitions, current status, and opportunities. In: Gennadios A (ed) Protein-based films and coatings. CRC Press, Taylor & Francis group LLC, Boca Ranton, Florida, pp 1–41

    Google Scholar 

  • Lafleur PG, Vergnes B (2014) Production of films and sheets. In: Lafleur PG, Vergnes B (eds) Polymer extrusion. Wiley, pp 245–303

    Chapter  Google Scholar 

  • Lima AM, Cerqueira MA, Souza BWS, Santos ECM, Teixeira JA, Moreira RA, Vicente AA (2010) New edible coatings composed of galactomannans and collagen blends to improve the postharvest quality of fruits – Influence on fruits gas transfer rate. J Food Eng 97:101–109

    Article  CAS  Google Scholar 

  • Martins JT, Bourbon AI, Pinheiro AC, Souza BWS, Cerqueira MA, Vicente AA (2013) Biocomposite films based on κ-carrageenan/locust bean gum blends and clays: Physical and antimicrobial properties. Food Bioprocess Tech. 6:2081–2092

    Article  CAS  Google Scholar 

  • Martins JT, Cerqueira MA, Bourbon AI, Pinheiro AC, Souza BWS, Vicente AA (2012) Synergistic effects between κ-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocolloid. 29(2):280–289

    Article  CAS  Google Scholar 

  • Mathis (2017) World-wide competence in coloring ang coating. Retrieved from http://www.mathisag.com/EN/index.php. Accessed 14 Jan 2017

  • Miller KS, Krochta JM (1997) Oxygen and aroma barrier properties of edible films: A review. Trends Food Sci Tech. 8(7):228–237

    Article  CAS  Google Scholar 

  • Miranda CS, Ferreira MS, Magalhães MT, Bispo APG, Oliveira JC, Silva JBA, José NM (2015) Starch-based films plasticized with glycerol and lignin from Piassava fiber reinforced with nanocrystals from Eucalyptus. Mater Today-Proc. 2(1):134–140

    Article  Google Scholar 

  • Ojijo V, Ray SS (2013) Processing strategies in bionanocomposites. Prog Polym Sci 38(10–11):1543–1589

    Article  CAS  Google Scholar 

  • Park HJ, Chinnan MS (1995) Gas and water vapor barrier properties of edible films from protein and cellulosic materials. J Food Eng 25(4):497–507

    Article  Google Scholar 

  • Pelissari FM, Yamashita F, Grossmann MVE (2011) Extrusion parameters related to starch/chitosan active films properties. Int J Food Sci Technol 46(4):702–710

    Article  CAS  Google Scholar 

  • Pereda M, Ponce AG, Marcovich NE, Ruseckaite RA, Martucci JF (2011) Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloid 25(5):1372–1381

    Article  CAS  Google Scholar 

  • Péroval C, Debeaufort F, Despre D, Voilley A (2002) Edible arabinoxylan-based films. 1. Effects of lipid type on water vapor permeability, film structure, and other physical characteristics. J Agr Food Chem 50:3977–3983

    Article  CAS  Google Scholar 

  • Ribeiro C, Vicente AA, Teixeira JA, Miranda C (2007) Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biol Technol 44(1):63–70

    Article  CAS  Google Scholar 

  • Robertson GL (2013) Optical, mechanical and barrier properties of thermoplastic polymers. In: Robertson GL (ed) Food packaging: Principles and practice. CRC Press, Taylor & Francis group LLC, Boca Ranton, Florida, pp 91–129

    Google Scholar 

  • Rossman JM (2009) Commercial manufacture of edible films. In: Huber KC, Embuscado ME (eds) Edible films and coatings for food applications. Springer, New York, pp 367–391

    Chapter  Google Scholar 

  • Rovira D (2008) Dictionary of flavors, 2nd edn. Wiley-Blackwell, New York

    Google Scholar 

  • Sanchez-Garcia MD, Lagaron JM (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17(5):987–1004

    Article  CAS  Google Scholar 

  • Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromol 11(9):2195–2198

    Article  CAS  Google Scholar 

  • Slavutsky AM, Bertuzzi MA (2015) Formulation and characterization of nanolaminated starch based film. LWT - Food Sci Technol. 61(2):407–413

    Article  CAS  Google Scholar 

  • Soroudi A, Jakubowicz I (2013) Recycling of bioplastics, their blends and biocomposites: A review. Eur Polym J 49(10):2839–2858

    Article  CAS  Google Scholar 

  • Sothornvit R, Rhim J-W, Hong S-I (2009) Effect of nano-clay type on the physical and antimicrobial properties of whey protein isolate/clay composite films. J Food Eng 91:468–473

    Article  CAS  Google Scholar 

  • Sperling LH (2006) Introduction to physical polymer science, 4th edn. John Wiley & Sons Inc, New Jersey

    Google Scholar 

  • Taghleef-Industries (2016) Bio-based Nativia®. Retrieved from http://www.ti-films.com/en/nativia/raw_materials. Accessed on 20 Dec 2016

  • Urbanczyk L, Ngoundjo F, Alexandre M, Jérôme C, Detrembleur C, Calberg C (2009) Synthesis of polylactide/clay nanocomposites by in situ intercalative polymerization in supercritical carbon dioxide. Eur Polym J. 45(3):643–648

    Article  CAS  Google Scholar 

  • Vicente AA, Cerqueira MA, Hilliou L, Rocha C (2011) Protein-based resins for food packaging. In: Lagaron JM (ed) Multifunctional and nanoreinforced polymers for food packaging. Woodhead Publishing Limited, Cambridge, UK, pp 610–648

    Chapter  Google Scholar 

  • Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24(3):784–795

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ângelo Cerqueira .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ballesteros, L.F., Michelin, M., Vicente, A.A., Teixeira, J.A., Cerqueira, M.Â. (2018). Processing, Production Methods and Characterization of Bio-Based Packaging Materials. In: Lignocellulosic Materials and Their Use in Bio-based Packaging. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-92940-8_4

Download citation

Publish with us

Policies and ethics