Skip to main content

Lignocellulosic Materials: Sources and Processing Technologies

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSBP))

Abstract

Lignocellulosic materials (LCMs) are one of the most promising feedstock for several biotechnological purposes. However, these LCMs are highly complex and present a robust structure of difficult access. For the valorization of each fraction of LCMs, a pre-treatment step is necessary in order to alter and/or remove the surrounding matrix of lignin and hemicellulose and increase the cellulose accessibility. Each pre-treatment has a specific effect on the LCM components and generally more than one pre-treatment step is necessary to obtain the fractions. This chapter primarily covers the definition of LCMs, their composition and varied sources. Subsequently, it is presented their structure, and the advantages and disadvantages of the different pre-treatment methods. Furthermore, a section with examples of successful processing technologies and valorization of each LCM component using different pre-treatment technologies is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym 87(2):963–979

    Article  CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    Article  CAS  PubMed  Google Scholar 

  • Amiri H, Karimi K (2016) Integration of autohydrolysis and organosolv delignification for efficient acetone, butanol, and ethanol production and lignin recovery. Ind Eng Chem Res 55(17):4836–4845

    Article  CAS  Google Scholar 

  • Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci. 7(2):163–173

    Article  CAS  Google Scholar 

  • Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energ Convers Manage 52(2):858–875

    Article  CAS  Google Scholar 

  • Boeriu CG, Bravo D, Gosselink RJA, Van-Dam JEG (2004) Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind Crop Prod 20(2):205–218

    Article  CAS  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohyd Polym 94(1):154–169

    Article  CAS  Google Scholar 

  • Bussemaker MJ, Zhang D (2013) Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Ind Eng Chem Res 52(10):3563–3580

    Article  CAS  Google Scholar 

  • Cybulska I, Brudecki G, Lei H (2013) Hydrothermal pretreatment of lignocellulosic biomass. In: Gu T (ed) Green biomass pretreatment for biofuels production. Springer, Netherlands, Dordrecht, pp 87–106

    Chapter  Google Scholar 

  • Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, de Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102(2):1988–1997

    Article  CAS  PubMed  Google Scholar 

  • Diaz AB, Moretti MMdS, Bezerra-Bussoli C, Carreira Nunes CdC, Blandino A, da Silva R, Gomes E (2015) Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production. Bioresour Technol 185:316–323

    Article  CAS  PubMed  Google Scholar 

  • Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crop Prod 33(2):259–276

    Article  CAS  Google Scholar 

  • El Hage R, Chrusciel L, Desharnais L, Brosse N (2010) Effect of autohydrolysis of Miscanthus x giganteus on lignin structure and organosolv delignification. Bioresour Technol 101(23):9321–9329

    Article  CAS  PubMed  Google Scholar 

  • Espinoza-Acosta JL, Torres-Chávez PI, Carvajal-Millán E, Ramírez-Wong B, Bello-Pérez LA, Montaño-Leyva B (2014) Ionic liquids and organic solvents for recovering lignin from lignocellulosic biomass. Bioresources 9(2):3660–3687

    Article  Google Scholar 

  • Fonseca Silva TC, Habibi Y, Colodette JL, Lucia LA (2011) The influence of the chemical and structural features of xylan on the physical properties of its derived hydrogels. Soft Matter 7(3):1090–1099

    Article  CAS  Google Scholar 

  • Gabrielii I, Gatenholm P, Glasser WG, Jain RK, Kenne L (2000) Separation, characterization and hydrogel-formation of hemicellulose from aspen wood. Carbohyd Polym 43(4):367–374

    Article  CAS  Google Scholar 

  • Garrote G, Falqué E, Dominguez H, Parajó JC (2007) Autohydrolysis of agricultural residues: study of reaction byproducts. Bioresour Technol 98(10):1951–1957

    Article  CAS  PubMed  Google Scholar 

  • George J, Sabapathi SN (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800

    Article  CAS  PubMed  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  PubMed  Google Scholar 

  • Hadar Y (2013) Sources for lignocellulosic raw materials for the production of ethanol. In: Faraco V (ed) Lignocellulose conversion: enzymatic and microbial tools for bioethanol production. Springer, Berlin, Heidelberg, pp 21–38

    Chapter  Google Scholar 

  • Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromol 9(6):1493–1505

    Article  CAS  Google Scholar 

  • Höije A, Gröndahl M, Tømmeraas K, Gatenholm P (2005) Isolation and characterization of physicochemical and material properties of arabinoxylans from barley husks. Carbohyd Polym 61(3):266–275

    Article  CAS  Google Scholar 

  • Höije A, Sternemalm E, Heikkinen S, Tenkanen M, Gatenholm P (2008) Material properties of films from enzymatically tailored arabinoxylans. Biomacromol 9(7):2042–2047

    Article  CAS  Google Scholar 

  • Johansson C, Bras J, Mondragon I, Nechita P, Plackett D, Simon P, Svetec DG, Virtanen S, Baschetti MG, Breen C, Clegg F, Aucejok S (2012) Renewable fibers and bio-based materials for packaging applications—A review of recent developments. Bioresources 7(2):2506–2552

    Article  Google Scholar 

  • Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crop Prod 37(1):93–99

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393

    Article  CAS  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90(2):735–764

    Article  CAS  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust 38(4):449–467

    Article  CAS  Google Scholar 

  • Loqué D, Scheller HV, Pauly M (2015) Engineering of plant cell walls for enhanced biofuel production. Curr Opin Plant Biol 25:151–161

    Article  CAS  PubMed  Google Scholar 

  • Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10(1):39–48

    Article  CAS  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energy Combust 38(4):522–550

    Article  CAS  Google Scholar 

  • Michelin M, Ruiz HA, Silva DP, Ruzene DS, Teixeira JA, Polizeli MLTM (2014) Cellulose from lignocellulosic waste. In: Ramawat KG, Mérillon J-M (eds) Polysaccharides: bioactivity and biotechnology. Springer International Publishing, Switzeland, pp 1–33

    Google Scholar 

  • Michelin M, Teixeira JA (2016) Liquid hot water pretreatment of multi feedstocks and enzymatic hydrolysis of solids obtained thereof. Bioresour Technol 216:862–869

    Article  CAS  PubMed  Google Scholar 

  • Michelin M, Ximenes E, Polizeli MdL, Ladisch MR (2016) Effect of phenolic compounds from pretreated sugarcane bagasse on cellulolytic and hemicellulolytic activities. Bioresour Technol 199:275–278

    Article  CAS  PubMed  Google Scholar 

  • Mikkonen KS, Heikkilä MI, Helén H, Hyvönen L, Tenkanen M (2010) Spruce galactoglucomannan films show promising barrier properties. Carbohyd Polym 79(4):1107–1112

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  CAS  PubMed  Google Scholar 

  • Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96(18):1986–1993

    Article  CAS  PubMed  Google Scholar 

  • Ng H-M, Sin LT, Tee T-T, Bee S-T, Hui D, Low C-Y, Rahmat AR (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos B 75:176–200

    Article  CAS  Google Scholar 

  • Normark M, Winestrand S, Lestander TA, Jönsson LJ (2014) Analysis, pretreatment and enzymatic saccharification of different fractions of Scots pine. BMC Biotechnol 14(1):20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peral C (2016) Biomass pretreatment strategies (technologies, environmental performance, economic considerations, industrial implementation). In: Poltronieri P, D’Urso O (eds) Biotransformation of agricultural waste and by-products. Elsevier, pp 125–160

    Chapter  Google Scholar 

  • Phitsuwan P, Sakka K, Ratanakhanokchai K (2013) Improvement of lignocellulosic biomass in planta: a review of feedstocks, biomass recalcitrance, and strategic manipulation of ideal plants designed for ethanol production and processability. Biomass Bioenergy 58:390–405

    Article  CAS  Google Scholar 

  • Quitain AT, Sasaki M, Goto M (2013) Microwave-based pretreatment for efficient biomass-to-biofuel conversion. In: Fang Z (ed) Pretreatment techniques for biofuels and biorefineries. Springer, Berlin, Heidelberg, pp 117–130

    Chapter  Google Scholar 

  • Romaní A, Garrote G, López F, Parajó JC (2011) Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification. Bioresour Technol 102(10):5896–5904

    Article  CAS  PubMed  Google Scholar 

  • Romaní A, Ruiz HA, Pereira FB, Teixeira JA, Domingues L (2014) Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed Eucalyptus globulus wood at high-solid loadings. Fuel 135:482–491

    Article  CAS  Google Scholar 

  • Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194

    Article  CAS  PubMed  Google Scholar 

  • Shafiei M, Karimi K, Taherzadeh MJ (2010) Pretreatment of spruce and oak by N-methylmorpholine-N-oxide (NMMO) for efficient conversion of their cellulose to ethanol. Bioresour Technol 101(13):4914–4918

    Article  CAS  PubMed  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Article  CAS  Google Scholar 

  • Smook GA (2002) Handbook for pulp and paper technologists. Angus Wilde Publications Inc., Vancouver, BC

    Google Scholar 

  • Sorek N, Yeats TH, Szemenyei H, Youngs H, Somerville CR (2014) The implications of lignocellulosic biomass chemical composition for the production of advanced biofuels. Bioscience 64(3):192–201

    Article  Google Scholar 

  • SriBala G, Chennuru R, Mahapatra S, Vinu R (2016) Effect of alkaline ultrasonic pretreatment on crystalline morphology and enzymatic hydrolysis of cellulose. Cellulose 23(3):1725–1740

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Ten E, Vermerris W (2013) Functionalized polymers from lignocellulosic biomass: state of the art. Polymers 5(2):600–642

    Article  CAS  Google Scholar 

  • Ugartondo V, Mitjans M, Vinardell MP (2008) Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour Technol 99(14):6683–6687

    Article  CAS  PubMed  Google Scholar 

  • Velmurugan R, Muthukumar K (2012) Ultrasound-assisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: optimization through response surface methodology. Bioresour Technol 112:293–299

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Frits PdV, Jin Y (2009) A win-win technique of stabilizing sand dune and purifying paper mill black-liquor. J Environ Sci 21(4):488–493

    Article  CAS  Google Scholar 

  • Wildschut J, Smit AT, Reith JH, Huijgen WJJ (2013) Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresour Technol 135:58–66

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Hu Z, Pu Y, Brummer EC, Ragauskas AJ (2010) Chemical compositions of four switchgrass populations. Biomass Bioenerg 34(1):48–53

    Article  CAS  Google Scholar 

  • Yunus R, Salleh SF, Abdullah N, Biak DRA (2010) Effect of ultrasonic pre-treatment on low temperature acid hydrolysis of oil palm empty fruit bunch. Bioresour Technol 101(24):9792–9796

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-HP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797–824

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Kumar R, Wyman CE (2013) Sugar yields from dilute oxalic acid pretreatment of maple wood compared to those with other dilute acids and hot water. Carbohyd Polym 92(1):334–344

    Article  CAS  Google Scholar 

  • Zhou H, Zhu J, Gleisner R, Qiu X, Horn E (2015) High titer ethanol and lignosulfonate production from SPORL pretreated poplar at pilot scale. Front Energ Res 3:16

    Article  Google Scholar 

  • Zhu S, Wu Y, Yu Z, Chen Q, Wu G, Yu F, Wang C, Jin S (2006) Microwave-assisted alkali pre-treatment of wheat straw and its enzymatic hydrolysis. Biosyst Eng 94(3):437–442

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ângelo Cerqueira .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ballesteros, L.F., Michelin, M., Vicente, A.A., Teixeira, J.A., Cerqueira, M.Â. (2018). Lignocellulosic Materials: Sources and Processing Technologies. In: Lignocellulosic Materials and Their Use in Bio-based Packaging. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-92940-8_2

Download citation

Publish with us

Policies and ethics