Skip to main content

Doped and Decorated Carbon Foams for Energy Applications

  • Chapter
  • First Online:
Nanocarbons for Energy Conversion: Supramolecular Approaches

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Here, we summarize progress over the past 9 years in the development of a new class of template -free carbon foam derived from the foaming and pyrolysis of sodium alkoxides, and their use in energy-related applications. Carbon foams offer a unique platform for applications in catalysis, energy storage , gas adsorption and sensing . They can have large surface area, a variety of pore sizes, and high electrical conductivity. In addition, they can be decorated with a wide variety of different nanoparticles tailored to suit the application, or doped with various heteroatoms to modify the nature of the carbon itself. The carbon foams described here are synthesized from cheap sodium alkoxide or alcohol-based feedstocks and do not require sacrificial templating to achieve the porous structure. Instead, these carbon foams are formed by foaming during decomposition of the alkoxide precursors . Despite the extremely simple method of production and the low cost of the product, the material properties are impressive. For example, surface areas in the region of 2500 m2/g can be routinely achieved, with atomically thin carbon walls. Carbon foams produced in this manner have been applied as hydrogen storage materials, electrochemical sensors, materials for spintronics , electrodes for lithium-ion batteries , oxygen reduction reaction electrocatalysts, carbon dioxide conversion electrocatalysts and superhydrophobic materials . In this chapter, the development of carbon foams , nanoparticle decorated carbon foams, and heteroatom-doped carbon foams for these applications will be reviewed. Future prospects for this material will also be speculated upon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kakati BK, Ghosh A, Verma A (2013) Efficient composite bipolar plate reinforced with carbon fiber and graphene for proton exchange membrane fuel cell. Int J Hydrogen Energy 38:9362–9369. https://doi.org/10.1016/j.ijhydene.2012.11.075

    Article  Google Scholar 

  2. Bayer T, Pham H-CC, Sasaki K et al (2016) Spray deposition of Nafion membranes: electrode-supported fuel cells. J Power Sources 327:319–326. https://doi.org/10.1016/j.jpowsour.2016.07.059

    Article  Google Scholar 

  3. Li G, Kaneko K, Ozeki S et al (1995) Water rejective nature of fluorinated microporous carbon fibers. Langmuir 11:716–717. https://doi.org/10.1021/la00003a008

    Article  Google Scholar 

  4. Ross PN, Sokol H. The corrosion of carbon black anodes in alkaline electrolyte I. Acetylene black and the effect of cobalt catalyzation. US Nav Ammunit Depot PA Barnes E Kirton, Anal Calorim. J Therm Anal 8:99–133

    Google Scholar 

  5. Sarawan S, Wongwuttanasatian T (2013) A feasibility study of using carbon black as a substitute to coal in cement industry. Energy Sustain Dev 17:257–260. https://doi.org/10.1016/J.ESD.2012.11.006

    Article  Google Scholar 

  6. Marinho B, Ghislandi M, Tkalya E et al (2012) Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol 221:351–358. https://doi.org/10.1016/j.powtec.2012.01.024

    Article  Google Scholar 

  7. Grahame TJ, Klemm R, Schlesinger RB (2014) Public health and components of particulate matter: the changing assessment of black carbon. J Air Waste Manag Assoc 64:620–660. https://doi.org/10.1080/10962247.2014.912692

    Article  Google Scholar 

  8. Fujigaya T, Nakashima N (2013) Fuel cell electrocatalyst using polybenzimidazole-modified carbon nanotubes as support materials. Adv Mater 25:1666–1681. https://doi.org/10.1002/adma.201204461

    Article  Google Scholar 

  9. Fujigaya T, Uchinoumi T, Kaneko K, Nakashima N (2011) Design and synthesis of nitrogen-containing calcined polymer/carbon nanotube hybrids that act as a platinum-free oxygen reduction fuel cell catalyst. Chem Commun (Camb) 47:6843–6845. https://doi.org/10.1039/c1cc11303h

    Article  Google Scholar 

  10. Lyth SM, Nabae Y, Islam NM et al (2012) Oxygen reduction activity of carbon nitride supported on carbon nanotubes. J Nanosci Nanotechnol 12:4887–4891. https://doi.org/10.1166/jnn.2012.4947

    Article  Google Scholar 

  11. Lyth SM, Silva SR (2007) Field emission from multiwall carbon nanotubes on paper substrates. Appl Phys Lett 90:173124

    Article  Google Scholar 

  12. Daio T, Staykov A, Guo L et al (2015) Lattice strain mapping of platinum nanoparticles on carbon and SnO2 supports. Sci Rep 5:13126. https://doi.org/10.1038/srep13126

    Article  Google Scholar 

  13. Chen D, Tang L, Li J (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157. https://doi.org/10.1039/b923596e

    Article  Google Scholar 

  14. Brownson DAC, Banks CE (2010) Graphene electrochemistry: an overview of potential applications. Analyst 135:2768. https://doi.org/10.1039/c0an00590h

    Article  Google Scholar 

  15. Bayer T, Bishop SR, Perry NH et al (2016) Tunable mixed ionic/electronic conductivity and permittivity of graphene oxide paper for electrochemical energy conversion. ACS Appl Mater Interfaces 8:11466–11475. https://doi.org/10.1021/acsami.6b01670

    Article  Google Scholar 

  16. Inagaki M, Qiu J, Guo Q (2015) Carbon foam: preparation and application. Carbon N Y 87:128–152. https://doi.org/10.1016/J.CARBON.2015.02.021

    Article  Google Scholar 

  17. Chen C, Kennel EB, Stiller AH et al (2006) Carbon foam derived from various precursors. Carbon N Y 44:1535–1543. https://doi.org/10.1016/J.CARBON.2005.12.021

    Article  Google Scholar 

  18. Lin Q, Luo B, Qu L et al (2013) Direct preparation of carbon foam by pyrolysis of cyanate ester resin at ambient pressure. J Anal Appl Pyrolysis 104:714–717. https://doi.org/10.1016/J.JAAP.2013.05.007

    Article  Google Scholar 

  19. Tondi G, Fierro V, Pizzi A, Celzard A (2009) Tannin-based carbon foams. Carbon N Y 47:1480–1492. https://doi.org/10.1016/J.CARBON.2009.01.041

    Article  Google Scholar 

  20. Inagaki M, Morishita T, Kuno A et al (2004) Carbon foams prepared from polyimide using urethane foam template. Carbon N Y 42:497–502. https://doi.org/10.1016/J.CARBON.2003.12.080

    Article  Google Scholar 

  21. Lei S, Guo Q, Shi J, Liu L (2010) Preparation of phenolic-based carbon foam with controllable pore structure and high compressive strength. Carbon N Y 48:2644–2646. https://doi.org/10.1016/J.CARBON.2010.03.017

    Article  Google Scholar 

  22. Hayashi A, Kimijima K, Miyamoto J, Yagi I (2009) Oxygen transfer and storage processes inside the mesopores of platinum-deposited mesoporous carbon catalyst thin-layer electrode. J Phys Chem C 113:12149–12153. https://doi.org/10.1021/jp901298r

    Article  Google Scholar 

  23. Hayashi A, Notsu H, Kimijima K et al (2008) Preparation of Pt/mesoporous carbon (MC) electrode catalyst and its reactivity toward oxygen reduction. Electrochim Acta 53:6117–6125. https://doi.org/10.1016/J.ELECTACTA.2008.01.110

    Article  Google Scholar 

  24. Suryavanshi UB, Ijima T, Hayashi A et al (2011) Simple methods for tuning the pore diameter of mesoporous carbon. Chem Commun 47:10758. https://doi.org/10.1039/c1cc13471j

    Article  Google Scholar 

  25. Serov A, Workman MJ, Artyushkova K et al (2016) Highly stable precious metal-free cathode catalyst for fuel cell application. J Power Sources 327. https://doi.org/10.1016/j.jpowsour.2016.07.087

  26. Gokhale R, Chen Y, Serov A et al (2017) Novel dual templating approach for preparation of highly active Fe-N-C electrocatalyst for oxygen reduction. Electrochim Acta 224:49–55. https://doi.org/10.1016/j.electacta.2016.12.052

    Article  Google Scholar 

  27. Choucair M, Thordarson P, Stride Ja (2009) Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol 4:30–33. https://doi.org/10.1038/nnano.2008.365

    Article  Google Scholar 

  28. Daio T, Bayer T, Ikuta T et al (2015) In-situ ESEM and EELS observation of water uptake and ice formation in multilayer graphene oxide. Sci Rep 5:11807. https://doi.org/10.1038/srep11807

    Article  Google Scholar 

  29. Marinho B, Ghislandi M, Tkalya E et al (2012) Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol 221:351–358. https://doi.org/10.1016/J.POWTEC.2012.01.024

    Article  Google Scholar 

  30. Xu X, Dou SX, Wang XL et al (2010) Graphene doping to enhance the flux pinning and supercurrent carrying ability of a magnesium diboride superconductor. Supercond Sci Technol 23:85003. https://doi.org/10.1088/0953-2048/23/8/085003

    Article  Google Scholar 

  31. Choucair M, Tse NMK, Hill MR, Stride JA (2012) Adsorption and desorption characteristics of 3-dimensional networks of fused graphene. Surf Sci 606:34–39. https://doi.org/10.1016/J.SUSC.2011.08.016

    Article  Google Scholar 

  32. Náfrádi B, Choucair M, Forró L (2014) Spin lifetime of itinerant electrons in chemically synthesized graphene multi-layers. Carbon N Y 74:346–351. https://doi.org/10.1016/J.CARBON.2014.03.046

    Article  Google Scholar 

  33. Riccò M, Pontiroli D, Mazzani M et al (2011) Muons probe strong hydrogen interactions with defective graphene. Nano Lett 11:4919–4922. https://doi.org/10.1021/nl202866q

    Article  Google Scholar 

  34. Speyer L, Fontana S, Cahen S et al (2015) Multi-scale characterization of graphenic materials synthesized by a solvothermal-based process: influence of the thermal treatment. Solid State Sci 50:42–51. https://doi.org/10.1016/j.solidstatesciences.2015.10.009

    Article  Google Scholar 

  35. Sevilla M, Fuertes AB (2006) Catalytic graphitization of templated mesoporous carbons. Carbon N Y 44:468–474. https://doi.org/10.1016/j.carbon.2005.08.019

    Article  Google Scholar 

  36. Watts PCP, Lyth SM, Henley SJ, Silva SRP (2008) Secondary nanotube growth on aligned carbon nanofibre arrays for superior field emission. J Nanosci Nanotechnol 8:2147–2150

    Article  Google Scholar 

  37. Rosen A, Taub A (1962) The kinetics of graphitization in steel at subcritical temperatures. Acta Metall 10:501–509. https://doi.org/10.1016/0001-6160(62)90193-1

    Article  Google Scholar 

  38. Speyer L, Fontana S, Ploneis S, Hérold C (2017) Influence of the precursor alcohol on the adsorptive properties of graphene foams elaborated by a solvothermal-based process. Microporous Mesoporous Mater 243:254–262. https://doi.org/10.1016/j.micromeso.2017.02.035

    Article  Google Scholar 

  39. Lyth SM, Shao H, Liu J, Sasaki K, Akiba E (2014) Hydrogen adsorption on graphene foam synthesized by combustion of sodium ethoxide. Int J Hydrogen Energy 39:376

    Google Scholar 

  40. Choucair M, Mauron P (2015) Versatile preparation of graphene-based nanocomposites and their hydrogen adsorption. Int J Hydrogen Energy 40:6158–6164. https://doi.org/10.1016/J.IJHYDENE.2015.03.065

    Article  Google Scholar 

  41. Cui H, Zheng J, Yang P et al (2015) Understanding the formation mechanism of graphene frameworks synthesized by solvothermal and rapid pyrolytic processes based on an alcohol-sodium hydroxide system. ACS Appl Mater Interfaces 7:11230–11238. https://doi.org/10.1021/acsami.5b01201

    Article  Google Scholar 

  42. Chou S-L, Wang J-Z, Choucair M et al (2010) Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem Commun 12:303–306. https://doi.org/10.1016/J.ELECOM.2009.12.024

    Article  Google Scholar 

  43. Wang J-Z, Lu L, Choucair M et al (2011) Sulfur-graphene composite for rechargeable lithium batteries. J Power Sources 196:7030–7034. https://doi.org/10.1016/J.JPOWSOUR.2010.09.106

    Article  Google Scholar 

  44. Kafi AKM, Yusoff MM, Choucair M, Crossley MJ (2017) A conductive crosslinked graphene/cytochrome c networks for the electrochemical and biosensing study. J Solid State Electrochem 21:2761–2767. https://doi.org/10.1007/s10008-017-3598-z

    Article  Google Scholar 

  45. Liu J, Takeshi D, Sasaki K, Lyth SM (2014) Defective graphene foam: a platinum catalyst support for PEMFCs. J Electrochem Soc 161:F838–F844. https://doi.org/10.1149/2.0231409jes

    Article  Google Scholar 

  46. Ma S, Liu J, Sasaki K et al (2017) Carbon foam decorated with silver nanoparticles for electrochemical CO2 conversion. Energy Technol. https://doi.org/10.1002/ente.201600576

    Article  Google Scholar 

  47. Lyth SMSM, Nabae Y, Islam NMNM et al (2012) Solvothermal synthesis of nitrogen-containing graphene for electrochemical oxygen reduction in acid media

    Google Scholar 

  48. Workman MJ, Serov A, Tsui L et al (2017) Fe–N–C catalyst graphitic layer structure and fuel cell performance. ACS Energy Lett 2:1489–1493. https://doi.org/10.1021/acsenergylett.7b00391

    Article  Google Scholar 

  49. Chen Y, Gokhale R, Serov A et al (2017) Novel highly active and selective Fe-N-C oxygen reduction electrocatalysts derived from in-situ polymerization pyrolysis. Nano Energy. https://doi.org/10.1016/j.nanoen.2017.05.059

    Article  Google Scholar 

  50. Strickland K, Miner E, Jia Q et al (2015) Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination. Nat Commun 6:7343. https://doi.org/10.1038/ncomms8343

    Article  Google Scholar 

  51. Dodelet J-P (2013) The controversial role of the metal in Fe- or Co-based electrocatalysts for the oxygen reduction reaction in acid medium. In: Shao M, Higgins D, Chen Z (eds) Electrocatalysis in fuel cells. Springer, London, London, pp 271–338

    Chapter  Google Scholar 

  52. Zitolo A, Goellner V, Armel V et al (2015) Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat Mater 14:937–942. https://doi.org/10.1038/nmat4367

    Article  Google Scholar 

  53. Varnell JA, Tse ECM, Schulz CE et al (2016) Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts. Nat Commun 7:12582. https://doi.org/10.1038/ncomms12582

    Article  Google Scholar 

  54. Dai L, Xue Y, Qu L et al (2015) Metal-free catalysts for oxygen reduction reaction. Chem Rev. https://doi.org/10.1021/cr5003563

    Article  Google Scholar 

  55. Lepri FG, Borges DLG, Araujo RGO et al (2010) Determination of heavy metals in activated charcoals and carbon black for Lyocell fiber production using direct solid sampling high-resolution continuum source graphite furnace atomic absorption and inductively coupled plasma optical emission spectrometry. Talanta 81:980–987

    Article  Google Scholar 

  56. Qu L, Liu Y, Baek J-BJB, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326. https://doi.org/10.1021/nn901850u

    Article  Google Scholar 

  57. Liu J, Cunning BV, Daio T et al (2016) Nitrogen-doped carbon foam as a highly durable metal-free electrocatalyst for the oxygen reduction reaction in alkaline solution. Electrochim Acta. https://doi.org/10.1016/j.electacta.2016.10.090

    Article  Google Scholar 

  58. Liu J, Takeshi D, Orejon D et al (2014) Defective nitrogen-doped graphene foam: a metal-free, non-precious electrocatalyst for the oxygen reduction reaction in acid. J Electrochem Soc 161:F544–F550. https://doi.org/10.1149/2.095404jes

    Article  Google Scholar 

  59. Mufundirwa A, Harrington GF, Smid B et al (2017) Durability of template-free Fe-N-C foams for electrochemical oxygen reduction in alkaline solution. J Power Sources. https://doi.org/10.1016/j.jpowsour.2017.07.025

    Article  Google Scholar 

  60. Liu J, Takeshi D, Sasaki K, Lyth SM (2014) Platinum-decorated nitrogen-doped graphene foam electrocatalysts. Fuel Cells 14:728–734. https://doi.org/10.1002/fuce.201300258

    Article  Google Scholar 

  61. Oh E-J, Hempelmann R, Nica V et al (2017) Coating procedure for chemical and morphological functionalization of multilayer-graphene foams. Carbon N Y 121:170–180. https://doi.org/10.1016/J.CARBON.2017.05.058

    Article  Google Scholar 

  62. Ohma A, Shinohara K, Iiyama A et al (2011) Membrane and catalyst performance targets for automotive fuel cells by FCCJ membrane, catalyst, MEA WG. In: ECS transactions. The Electrochemical Society, pp 775–784

    Google Scholar 

  63. Lyth SM, Ma W, Liu J et al (2015) Solvothermal synthesis of superhydrophobic hollow carbon nanoparticles from a fluorinated alcohol. Nanoscale 7:16087–16093. https://doi.org/10.1039/c5nr03484a

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the support of the Kyushu University Platform of Inter/Transdisciplinary Energy Research (Q-PIT); and the International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Lyth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lyth, S.M. (2019). Doped and Decorated Carbon Foams for Energy Applications. In: Nakashima, N. (eds) Nanocarbons for Energy Conversion: Supramolecular Approaches. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-92917-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92917-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92915-6

  • Online ISBN: 978-3-319-92917-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics