Skip to main content

Understanding the Stability of Nanoscale Catalysts in PEM Fuel Cells by Identical Location TEM

  • Chapter
  • First Online:
Nanocarbons for Energy Conversion: Supramolecular Approaches

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Proton Exchange Membrane Fuel Cells (PEMFCs) are promising energy conversion devices due to their high energy density, low operating temperature, high efficiency, and ultimate cleanness—no carbon dioxide emission. Yet, a critical factor which significantly influences the performance of PEMFC is the stability of platinum group metal catalysts, which consists of Pt or Pt-alloy nanoparticles (2–5 nm in diameter) supported on the surface of carbon particles (40–100 nm in diameter) during fuel cell cycling. In fact, the Pt or Pt-alloy catalysts typically dissolve and/or grow in size with the number of cycles. In order to reveal the degradation mechanisms of these nanocatalysts , we have developed an experimental setup which replicates on a TEM grid the effect of voltage cycling on the cathode of an MEA. Using this approach, it is possible to track the behavior of a single nanoparticle at different stages of voltage cycling at the nano/atomic scale. Through these direct observations, we demonstrated that due to carbon corrosion the defects appear at the carbon/nanoparticle interface, which in turn result in particle migration and consequently coalescence. We also revealed the mass transfer mechanisms during the coalescence of nanoparticles. In addition, we revisited the commonly held view on the mechanism of particle dissolution and deposition. Thus, during the later stages of cycling, when the concentration of dissoluble Pt reaches a critical amount, single atoms and atomic clusters appear on the carbon support, which consequently move toward other particles and re-deposit on their surface. Furthermore, we investigated the atomic surface evolution of Pt-Ni nanoparticles under the effect of voltage through advanced spectroscopy technique such as EDS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holby EF, Sheng W, Shao-Horn Y, Morgan D (2009) Pt nanoparticle stability in PEM fuel cells: influence of particle size distribution and crossover hydrogen. Energy Environ Sci 2:865. https://doi.org/10.1039/b821622n

    Article  Google Scholar 

  2. Jalan V, Taylor EJ (1983) Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid. J Electrochem Soc 130:2299–12302

    Article  Google Scholar 

  3. Landsman DA, Luczak FJ (2003) Handbook of fuel cells: fundamentals, technology and applications

    Google Scholar 

  4. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal 56:9–35

    Article  Google Scholar 

  5. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247

    Article  Google Scholar 

  6. Ferreira PJ, la O’ GJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA (2005) Instability of Pt∕C electrocatalysts in proton exchange membrane fuel cells. J Electrochem Soc 152:A2256. https://doi.org/10.1149/1.2050347

  7. Shao-Horn Y, Sheng WC, Chen S, Ferreira PJ, Holby EF, Morgan D (2007) Instability of supported platinum nanoparticles in low-temperature fuel cells. Top Catal 46:285–305. https://doi.org/10.1007/s11244-007-9000-0

    Article  Google Scholar 

  8. Ferreira PJ, Shao-Horn Y (2007) Formation mechanism of Pt single-crystal nanoparticles in proton exchange membrane fuel cells. Electrochem Solid-State Lett 10:B60–B63

    Article  Google Scholar 

  9. Gilbert JA, Kropf AJ, Kariuki NN, DeCrane S, Wang X, Rasouli S, Yu K, Ferreira PJ, Morgan D, Myers DJ (2015) In-operando anomalous small-angle X-ray scattering investigation of Pt 3 Co catalyst degradation in aqueous and fuel cell environments. J Electrochem Soc 162:F1487–F1497. https://doi.org/10.1149/2.0531514jes

    Article  Google Scholar 

  10. Chen S, Gasteiger HA, Hayakawa K, Tada T, Shao-Horn Y (2010) Platinum-alloy cathode catalyst degradation in proton exchange membrane fuel cells: nanometer-scale compositional and morphological changes. J Electrochem Soc 157:A82. https://doi.org/10.1149/1.3258275

    Article  Google Scholar 

  11. Gummalla M, Ball S, Condit D, Rasouli S, Yu K, Ferreira P, Myers D, Yang Z (2015) Effect of particle size and operating conditions on Pt3Co PEMFC cathode catalyst durability. Catalysts 5:926–948. https://doi.org/10.3390/catal5020926

    Article  Google Scholar 

  12. Dubau L, Maillard F, Chatenet M, Guetaz L, André J, Rossinot E (2010) Durability of Pt3Co/C cathodes in a 16 Cell PEMFC stack: macro/microstructural changes and degradation mechanisms. J Electrochem Soc 157:B1887. https://doi.org/10.1149/1.3485104

    Article  Google Scholar 

  13. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima KI, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951. https://doi.org/10.1021/cr050182l

    Article  Google Scholar 

  14. Hayre R, Colella W, Cha S, Prinz F (2009) Fuel cell fundamentals. Wiley, New York

    Google Scholar 

  15. Yu X, Ye S (2007) Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst. J Power Sources 172:145

    Google Scholar 

  16. Shao Y, Kou R, Wang J, Viswanathan VVKJH, Liu J, Wang Y, Lin Y (2008) The influence of the electrochemical stressing (potential step and potential-static holding) on the degradation of polymer electrolyte membrane fuel cell electrocatalysts. J Power Sources 280:280

    Article  Google Scholar 

  17. Kocha S (2012) Electrochemical degradation: electrocatalyst and support durability. In: Mench MM, Kumbur EC, Veziroglu TN (eds) Polymer electrolyte fuel cell degradation. Academic Press, Oxford, p 89

    Chapter  Google Scholar 

  18. Yuan X-Z, Li H, Zhang S, Martin J, Wang H (2011) A review of polymer electrolyte membrane fuel cell durability test protocols. J Power Sources 196:9107

    Google Scholar 

  19. Ricea CA, Urchaga P, Pistono AO, McFerrin BW, McComb BT, Hu J (2015) Platinum dissolution in fuel cell electrodes: enhanced degradation from surface area assessment in automotive accelerated stress tests. J Electrochem Soc 162:F1175

    Google Scholar 

  20. Marcua Alina, Totha Gabor, Patrick Pietraszb JW (2014) Cathode catalysts degradation mechanism from liquid electrolyte to membrane electrode assembly. Comptes Rendus Chim 17:752

    Article  Google Scholar 

  21. Zorko M, Jozinović B, Bele M, Hodnik N, Gaberšček M (2014) SEM method for direct visual tracking of nanoscale morphological changes of platinum based electrocatalysts on fixed locations upon electrochemical or thermal treatments. Ultramicroscopy 140:44–50. https://doi.org/10.1016/j.ultramic.2014.02.006

    Article  Google Scholar 

  22. Janbroers S, Louwen JN, Zandbergen HW, Kooyman PJ (2009) Insights into the nature of iron-based Fischer-Tropsch catalysts from quasi in situ TEM-EELS and XRD. J Catal 268:235–242. https://doi.org/10.1016/j.jcat.2009.09.021

    Article  Google Scholar 

  23. Fiordaliso EM, Sharafutdinov I, Carvalho HWP, Grunwaldt JD, Hansen TW, Chorkendorff I, Wagner JB, Damsgaard CD (2015) Intermetallic GaPd2 nanoparticles on SiO2 for low-pressure CO2 hydrogenation to methanol: catalytic performance and in situ characterization. ACS Catal 5:5827–5836. https://doi.org/10.1021/acscatal.5b01271

    Article  Google Scholar 

  24. Rasouli S (2017) Degradation mechanisms of Pt and Pt Alloy nanocatalysts in proton exchange membrane fuel cells. University of Texas at Austin

    Google Scholar 

  25. Evora MC, Klosterman D, Lafdi K, Li L, Silva LGA (2012) Mechanism of electron beam radiation damage on carbon nanofiber surface. In: UV EB technical conference proceedings

    Google Scholar 

  26. Pandy A, Yang Z, Gummalla M, Atrazhev VV, Kuzminyh NY, Sultanov VI, Burlatsky S (2013) A carbon corrosion model to evaluate the effect of steady state and transient operation of a polymer electrolyte membrane fuel cell. J Electrochem Soc 160:F972–F979. https://doi.org/10.1149/2.036309jes

    Article  Google Scholar 

  27. Rasouli S, Ortiz Godoy RA, Yang Z, Gummalla M, Ball SC, Myers D, Ferreira PJ (2017) Surface area loss mechanisms of Pt3Co nanocatalysts in proton exchange membrane fuel cells. J Power Sources 343:571–579. https://doi.org/10.1016/j.jpowsour.2017.01.058

    Article  Google Scholar 

  28. Rankin J, Boatner LA (1994) Unstable neck formation during initial-stage sintering. J Am Ceram Soc 77:1987–1990. https://doi.org/10.1111/j.1151-2916.1994.tb07088.x

    Article  Google Scholar 

  29. Chen S, Sheng W, Yabuuchi N, Ferreira PJ, Allard LF, Shao-Horn Y (2008) Origin of oxygen reduction reaction activity on Pt3Co nanoparticles: atomically resolved chemical compositions and structures. J Phys Chem C 113:1109–1125

    Google Scholar 

  30. Watanabe M, Tsurumi K, Mizukami T, Nakamura T, Stonehart P (1994) Activity and stability of ordered and disordered Co/Pt alloys for phosphoric acid fuel cells. J Electrochem Soc 141:2659

    Google Scholar 

  31. Snyder RC, Doherty MF (2007) Faceted crystal shape evolution during dissolution or growth. AIChE J 53:1337–1348. https://doi.org/10.1002/aic.11132

    Article  Google Scholar 

  32. Wise H, Oudar J (1990) Materials and concepts in surface reactivity and catalysis. Dover Publications, New York

    Google Scholar 

  33. Bard AJ, Faulkner LR (2002) Electrochemical methods: fundamentals and applications. Wiley New York;, (2001) Russ J Electrochem 38:1505–1506. https://doi.org/10.1023/a:1021637209564

  34. Hammer B, Norskov JK (2000) Theoretical surface science and catalysis-calculations and concepts. Adv Catal 45:71–129

    Google Scholar 

  35. Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang JX, Nilekar AU, Mavrikakis M, Valerio JA, Uribe F (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46:249–262

    Google Scholar 

  36. Schlapka A, Lischka M, Gross A, Kasberger U, Jakob P (2003) Surface strain versus substrate interaction in heteroepitaxial metal layers: Pt on Ru(0001). Phys Rev Lett 91:016101/1-016101/4. https://doi.org/10.1103/physrevlett.91.016101

  37. Schlögl K, Mayrhofer KJJ, Hanzlik M, Arenz M (2011) Identical-location TEM investigations of Pt/C electrocatalyst degradation at elevated temperatures. J Electroanal Chem 662:355–360. https://doi.org/10.1016/j.jelechem.2011.09.003

  38. Ugurlu O, Haus J, Gunawan AA, Thomas MG, Maheshwari S, Tsapatsis M, Mkhoyan KA (2011) Radiolysis to knock-on damage transition in zeolites under electron beam irradiation. Phys Rev B - Condens Matter Mater Phys 83. https://doi.org/10.1103/physrevb.83.113408

  39. Brown R by PD (1999) Transmission electron microscopy—a textbook for materials science, by David B. Williams and C. Barry Carter. Microsc Microanal 5:452–453. https://doi.org/10.1017/s1431927699990529

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo J. Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rasouli, S., Ferreira, P.J. (2019). Understanding the Stability of Nanoscale Catalysts in PEM Fuel Cells by Identical Location TEM. In: Nakashima, N. (eds) Nanocarbons for Energy Conversion: Supramolecular Approaches. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-92917-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92917-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92915-6

  • Online ISBN: 978-3-319-92917-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics