Skip to main content

The Role of Carbon Blacks as Catalyst Supports and Structural Elements in Polymer Electrolyte Fuel Cells

  • Chapter
  • First Online:
Book cover Nanocarbons for Energy Conversion: Supramolecular Approaches

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

In polymer electrolyte fuel cells (PEFCs) based on proton exchange membranes (PEM), carbon blacks have been used as supports for platinum and its alloys since the 1970s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kunz HR, Gruver GA (1975) The catalytic activity of platinum supported on carbon for electrochemical oxygen reduction in phosphoric acid. J Electrochem Soc 122(10):1279–1287. https://doi.org/10.1149/1.2134000

    Article  Google Scholar 

  2. Jalan VM, Bushnell CL (1979) Method for producing highly dispersed catalytic platinum. USA Patent 4136059

    Google Scholar 

  3. Appleby AJ, Foulkes FR (1989) Fuel cell handbook. Van Nostrand Reinhold, New York

    Google Scholar 

  4. Bockris JOM, Cahan BD (1969) Effect of a finite-contact-angle meniscus on kinetics in porous electrode systems. J Chem Phys 50(3):1307–1324. https://doi.org/10.1063/1.1671193

    Article  Google Scholar 

  5. Watanabe M, Tomikawa M, Motoo S (1985) Preparation of a high performance gas diffusion electrode. J Electroanal Chem 182(1):193–196. https://doi.org/10.1016/0368-1874(85)85453-8

    Article  Google Scholar 

  6. Watanabe M, Makita K, Usami H, Motoo S (1986) New preparation method of a high performance gas diffusion electrode working at 100% utilization of catalyst clusters and analysis of the reaction layer. J Electroanal Chem 197(1–2):195–208. https://doi.org/10.1016/0022-0728(86)80149-8

    Article  Google Scholar 

  7. Watanabe M, Shimura C, Tsurumi K, Hara N (1991) A new wet-proof technique of gas-diffusion electrodes. Chem Lett 20(7):1113–1116. https://doi.org/10.1246/cl.1991.1113

    Article  Google Scholar 

  8. Song JM, Uchida H, Watanabe M (2005) Effect of wet-proofing treatment of carbon backing layer in gas diffusion electrodes on the PEFC performance. Electrochem 73(3):189–193

    Google Scholar 

  9. Song JM, Suzuki S, Uchida H, Watanabe M (2006) Preparation of high catalyst utilization electrodes for polymer electrolyte fuel cells. Langmuir 22(14):6422–6428. https://doi.org/10.1021/la060671w

    Article  Google Scholar 

  10. Uchida H, Song JM, Suzuki S, Nakazawa E, Baba N, Watanabe M (2006) Electron tomography of nafion ionomer coated on Pt/carbon black in high utilization electrode for PEFCs. J Phys Chem B 110(27):13319–13321. https://doi.org/10.1021/jp062678s

    Article  Google Scholar 

  11. Lee M, Uchida M, Yano H, Tryk DA, Uchida H, Watanabe M (2010) New evaluation method for the effectiveness of platinum/carbon electrocatalysts under operating conditions. Electrochim Acta 55(28):8504–8512. https://doi.org/10.1016/j.electacta.2010.07.071

    Article  Google Scholar 

  12. Thiele EW (1939) Relation between catalytic activity and size of particle. Ind Eng Chem 31(7):916–920. https://doi.org/10.1021/ie50355a027

    Article  Google Scholar 

  13. Giner J, Hunter C (1969) The mechanism of operation of the teflon-bonded bas diffusion electrode: a mathematical model. J Electrochem Soc 116(8):1124–1130. https://doi.org/10.1149/1.2412232

    Article  Google Scholar 

  14. Mund K, Fv Sturm (1975) Degree of utilization and specific effective surface area of electrocatalysts in porous electrodes. Electrochim Acta 20(6–7):463–467. https://doi.org/10.1016/0013-4686(75)90035-3

    Article  Google Scholar 

  15. Wakabayashi N, Takeichi M, Itagaki M, Uchida H, Watanabe M (2005) Temperature-dependence of oxygen reduction activity at a platinum electrode in an acidic electrolyte solution investigated with a channel flow double electrode. J Electroanal Chem 574(2):339–346. https://doi.org/10.1016/j.jelechem.2004.08.013

    Article  Google Scholar 

  16. Lee M, Uchida M, Tryk DA, Uchida H, Watanabe M (2011) The effectiveness of platinum/carbon electrocatalysts: dependence on catalyst layer thickness and Pt alloy catalytic effects. Electrochim Acta 56(13):4783–4790. https://doi.org/10.1016/j.electacta.2011.03.072

    Article  Google Scholar 

  17. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B: Environ 56(1–2):9–35. https://doi.org/10.1016/j.apcatb.2004.06.021

    Article  Google Scholar 

  18. Uchida M, Park YC, Kakinuma K, Yano H, Tryk DA, Kamino T, Uchida H, Watanabe M (2013) Effect of the state of distribution of supported Pt nanoparticles on effective Pt utilization in polymer electrolyte fuel cells. Phys Chem Chem Phys 15(27):11236–11247. https://doi.org/10.1039/C3cp51801a

    Article  Google Scholar 

  19. Takahashi K, Kakinuma K, Uchida M (2016) Improvement of cell performance in low-Pt-loading PEFC cathode catalyst layers prepared by the electrospray method. J Electrochem Soc 163(10):F1182–F1188. https://doi.org/10.1149/2.0611610jes

    Article  Google Scholar 

  20. Watanabe M, Saegusa S, Stonehart P (1988) Electro-catalytic activity on supported platinum crystallites for oxygen reduction in sulphuric acid. Chem Lett 17(9):1487–1490. https://doi.org/10.1246/cl.1988.1487

    Article  Google Scholar 

  21. Bregoli LJ (1978) The influence of platinum crystallite size on the electrochemical reduction of oxygen in phosphoric acid. Electrochim Acta 23(6):489–492. https://doi.org/10.1016/0013-4686(78)85025-7

    Article  Google Scholar 

  22. Ross PN (1986) In: Rao UV (ed) Precious Metals 1986. International Precious Metals Institute, Allentown, PA, pp 355–363

    Google Scholar 

  23. Watanabe M, Sei H, Stonehart P (1989) The influence of platinum crystallite size on the electroreduction of oxygen. J Electroanal Chem 261:375–387. https://doi.org/10.1016/0022-0728(89)85006-5

    Article  Google Scholar 

  24. VanMuylder J, Pourbaix M (1966) Carbon. In: Pourbaix M (ed) Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, Oxford, pp 449–457

    Google Scholar 

  25. Yoda T, Uchida H, Watanabe M (2007) Effects of operating potential and temperature on degradation of electrocatalyst layer for PEFCs. Electrochim Acta 52(19):5997–6005. https://doi.org/10.1016/j.electacta.2007.03.049

    Article  Google Scholar 

  26. Reiser CA, Bregoli L, Patterson TW, Yi JS, Yang JD, Perry ML, Jarvi TD (2005) A reverse-current decay mechanism for fuel cells. Electrochem Solid-State Lett 8(6):A273–A276. https://doi.org/10.1149/1.1896466

    Article  Google Scholar 

  27. Bett JA, Kinoshita K, Stonehart P (1974) Crystallite growth of platinum dispersed on graphitized carbon black. J Catal 35(2):307–316. https://doi.org/10.1016/0021-9517(74)90209-7

    Article  Google Scholar 

  28. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287(5460):1989–1992. https://doi.org/10.1126/science.287.5460.1989

    Article  Google Scholar 

  29. Markovic NM, Adzic RR, Cahan BD, Yeager EB (1994) Structural effects in electrocatalysis: oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions. J Electroanal Chem 377(1–2):249–259. https://doi.org/10.1016/0022-0728(94)03467-2

    Article  Google Scholar 

  30. Sugawara Y, Okayasu T, Yadav AP, Nishikata A, Tsuru T (2012) Dissolution mechanism of platinum in sulfuric acid solution. J Electrochem Soc 159(11):F779–F786. https://doi.org/10.1149/2.017212jes

    Article  Google Scholar 

  31. Yano H, Akiyama T, Bele P, Uchida H, Watanabe M (2010) Durability of Pt/graphitized carbon catalysts for the oxygen reduction reaction prepared by the nanocapsule method. Phys Chem Chem Phys 12(15):3806–3814. https://doi.org/10.1039/B923460H

    Article  Google Scholar 

  32. Hossain MS, Tryk D, Yeager E (1989) The electrochemistry of graphite and modified graphite surfaces: the reduction of O2. Electrochim Acta 34:1733–1737. https://doi.org/10.1016/0013-4686(89)85057-1

    Article  Google Scholar 

  33. Ishigami Y, Takada K, Yano H, Inukai J, Uchida M, Nagumo Y, Hyakutake T, Nishide H, Watanabe M (2011) Corrosion of carbon supports at cathode during hydrogen/air replacement at anode studied by visualization of oxygen partial pressures in a PEFC—Start-up/shut-down simulation. J Power Sources 196(6):3003–3008. https://doi.org/10.1016/j.jpowsour.2010.11.092

    Article  Google Scholar 

  34. Lee M, Uchida M, Okaya K, Uchida H, Watanabe M (2011) Durability of Pt/graphitized carbon catalyst prepared by the nanocapsule method for the start/stop operating condition of polymer electrolyte fuel cells. Electrochem Commun 79(5):381–387. https://doi.org/10.5796/electrochemistry.79.381

    Article  Google Scholar 

  35. Hara M, Lee M, Liu C-H, Chen B-H, Yamashita Y, Uchida M, Uchida H, Watanabe M (2012) Electrochemical and Raman spectroscopic evaluation of Pt/graphitized carbon black catalyst durability for the start/stop operating condition of polymer electrolyte fuel cells. Electrochim Acta 70(Suppl C):171–181. https://doi.org/10.1016/j.electacta.2012.03.043

  36. Yano H, Akiyama T, Watanabe M, Uchida H (2013) High durability of Pt/graphitized carbon catalysts for polymer electrolyte fuel cells prepared by the nanocapsule method. J Electroanal Chem 688(Suppl C):137–142. https://doi.org/10.1016/j.jelechem.2012.09.028

  37. Park YC, Kakinuma K, Uchida M, Tryk DA, Kamino T, Uchida H, Watanabe M (2013) Investigation of the corrosion of carbon supports in polymer electrolyte fuel cells using simulated start-up/shutdown cycling. Electrochim Acta 91:195–207. https://doi.org/10.1016/J.Electacta.2012.12.082

    Article  Google Scholar 

  38. Muylder JV, Zoubov ND, Pourbaix M (1966) Platinum. In: Pourbaix M (ed) Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, Oxford, pp 378–383

    Google Scholar 

  39. Park Y-C, Kakinuma K, Uchida M, Uchida H, Watanabe M (2014) Deleterious effects of interim cyclic voltammetry on Pt/carbon black catalyst degradation during start-up/shutdown cycling evaluation. Electrochim Acta 123(Suppl C):84–92. https://doi.org/10.1016/j.electacta.2013.12.120

  40. Yamashita Y, Itami S, Takano J, Kodama M, Kakinuma K, Hara M, Watanabe M, Uchida M (2016) Durability of Pt catalysts supported on graphitized carbon-black during gas-exchange start-up operation similar to that used for fuel cell vehicles. J Electrochem Soc 163(7):F64–F650. https://doi.org/10.1149/2.0101704jes

    Article  Google Scholar 

  41. Takei C, Kakinuma K, Kawashima K,Tashiro K, Watanabe M, Uchida M (2016) Load cycle durability of a graphitized carbon black-supported platinum catalyst in polymer electrolyte fuel cell cathodes. J Power Sources 324:729–737. https://doi.org/10.1016/j.jpowsour.2016.05.117

  42. Yano H, Watanabe M, Iiyama A, Uchida H (2016) Particle-size effect of Pt cathode catalysts on durability in fuel cells. Nano Energy 29:323–333. https://doi.org/10.1016/j.nanoen.2016.02.016

    Article  Google Scholar 

  43. Watanabe M, Yano H, Uchida H, Tryk DA (2017) Achievement of distinctively high durability at nanosized Pt catalysts supported on carbon black for fuel cell cathodes. J Electroanal Chem. https://doi.org/10.1016/j.jelechem.2017.11.017

    Article  Google Scholar 

  44. Miyate K, Wake C (2014) Japan Patent 5647079

    Google Scholar 

  45. Yamashita Y, Itami S, Takano J, Kakinuma K, Uchida H, Watanabe M, Iiyama A, Uchida M (2017) Degradation mechanisms of carbon supports under hydrogen passivation startup and shutdown process for PEFCs. J Electrochem Soc 164(4):F181–F187. https://doi.org/10.1149/2.0101704jes

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Watanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Watanabe, M., Tryk, D.A. (2019). The Role of Carbon Blacks as Catalyst Supports and Structural Elements in Polymer Electrolyte Fuel Cells. In: Nakashima, N. (eds) Nanocarbons for Energy Conversion: Supramolecular Approaches. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-92917-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92917-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92915-6

  • Online ISBN: 978-3-319-92917-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics