Skip to main content

High-Temperature Polymer Electrolyte Membrane Fuel Cells

  • Chapter
  • First Online:
Nanocarbons for Energy Conversion: Supramolecular Approaches

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

An introduction to high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC) is given. The rationale behind the increased temperature is outlined in terms of tolerance to carbon monoxide, less critical water management, cooling issues, and quality of waste heat. Additionally, elevated temperature might imply a shorter route to platinum-free oxygen reduction catalysts. The means for making operation possible at temperatures between 100 and 200 °C is to dope a thermally stable polymer, typically polybenzimidazole, with proton conductive phosphoric acid. Fuel cells based on this membrane system show remarkable stability when operated at 160 °C. The different materials and cell components used are reviewed with comparison to conventional low-temperature polymer fuel cells and phosphoric acid fuel cells all along. The role of nanostructured carbon materials is mostly in relation to composite membranes and catalysts. For the membranes, carbon nanotubes and graphene have been applied as structural fillers to improve mechanical properties. For catalysts, carbon black, carbon nanotubes, and graphene have been used as catalyst support for the catalytic platinum nanoparticles. Moreover, the main trend within development of alternatives to platinum as oxygen reduction catalyst is iron–nitrogen–carbon structures. These materials and their possible application in HT-PEMFC are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li Q, He R, Gao J et al (2003) The CO poisoning effect in polymer electrolyte membrane fuel cells operational at temperatures up to 200 °C. J Electrochem Soc 150(12):A1599–A1605

    Article  Google Scholar 

  2. Jensen JO, Li Q, Pan C et al (2007) High temperature PEMFC and the possible utilization of the excess heat for fuel processing. Int J Hydrogen Energy 32(10–11):1567–1571

    Article  Google Scholar 

  3. Jensen JO, Li Q, He R et al (2005) 100–200 °C polymer fuel cells for use with NaAlH4. J Alloys Compd 404–406:653–656

    Article  Google Scholar 

  4. Jaouen F, Proietti E, Lefévre M et al (2011) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4:114–130

    Article  Google Scholar 

  5. Meyer S, Nikiforov AV, Petrushina IM et al (2015) Transition metal carbides (WC, Mo2C, TaC, NbC) as potential electrocatalysts for the hydrogen evolution reaction (HER) at medium temperatures. Int J Hydrogen Energy 40(7):2905–2911

    Article  Google Scholar 

  6. Kochetova N, Animitsa I, Medvedev D et al (2016) Recent activity in the development of proton conducting oxides for high-temperature applications. RSC Adv 6:73222–73268

    Article  Google Scholar 

  7. Paschos O, Kunze J, Stimming U, Maglia F (2011) A review on phosphate based, solid state, protonic conductors for intermediate temperature fuel cells. J Phys: Condens Matter 23:234110

    Google Scholar 

  8. Jensen JO, Hjuler HA, Aili D et al (2016) Introduction. In: Li Q et al (eds) High temperature polymer electrolyte membrane fuel cells. Springer International Publishing, Switzerland, pp 1–4

    Google Scholar 

  9. Jakobsen MTD, Jensen JO, Cleemann LN et al (2016) Durability issues and status of PBI-based fuel cells. In: Li Q et al (eds) High temperature polymer electrolyte membrane fuel cells. Springer International Publishing, Switzerland, pp 487–509

    Chapter  Google Scholar 

  10. Brown EH, Whitt CD (1952) Vapor pressure of phosphoric acid. Ind Eng Chem 44:615–618

    Article  Google Scholar 

  11. Park HY, Ahn SH, Kim SK et al (2016) Characterizing coverage of phosphoric acid on carbon-supported platinum nanoparticles using in situ extended X-Ray absorption fine structure spectroscopy and cyclic voltammetry. J Electrochem Soc 163:F210–F215

    Google Scholar 

  12. Korte C, Conti F, Wackerl J et al (2016) Phosphoric acid and its interactions with polybenzimidazole-type polymers. In: Li Q et al (eds) High temperature polymer electrolyte membrane fuel cells. Springer International Publishing, Switzerland, pp 169–194

    Chapter  Google Scholar 

  13. Zeng J, Jiang SP (2011) Characterization of high-temperature proton-exchange membranes based on phosphotungstic acid functionalized mesoporous silica nanoconnposites for fuel cells. J Phys Chem C 115:11854–11863

    Article  Google Scholar 

  14. Ansari Y, Tucker TG, Huang W et al (2016) A flexible all-inorganic fuel cell membrane with conductivity above Nafion, and durable operation at 150 °C. J Power Sources 303:142–149

    Article  Google Scholar 

  15. Luo J, Jensen AH, Brooks N et al (2015) 1,2,4-Triazolium perfluorobutanesulfonate as an archetypal pure protic organic ionic plastic crystal electrolyte for all-solid-state fuel cells. Energy Environ Sci 8(4):1276–1291

    Article  Google Scholar 

  16. Wainright JS, Wang JT, Weng D, Savinell RF, Litt M (1995) Acid-doped polybenzimidazoles—a new polymer electrolyte. J Electrochem Soc 142:L121–L123

    Article  Google Scholar 

  17. Savinell R, Yeager E, Tryk D et al (1994) A polymer electrolyte for operation at temperatures up to 200 °C. J Electrochem Soc 141:L46–L48

    Article  Google Scholar 

  18. Aili D, Savinell RF, Jensen JO et al (2014) The electrochemical behaviour of phosphoric acid doped poly(perfluorosulfonic acid) membranes. ChemElectroChem 1:1471–1475

    Article  Google Scholar 

  19. Hansen MK, Aili D, Christensen E et al (2012) PEM steam electrolysis at 130 °C using a phosphoric acid doped short side chain PFSA membrane. Int J Hydrogen Energy 37(15):10992–11000

    Article  Google Scholar 

  20. Kerres J (2016) Applications of acid–base blend concepts to intermediate temperature membranes. In: Li Q et al (eds) High temperature polymer electrolyte membrane fuel cells. Springer International Publishing, Switzerland, pp 59–89

    Chapter  Google Scholar 

  21. Yang J, He R, Aili D (2016) Synthesis of polybenzimidazoles. In: Li Q et al (eds) High temperature polymer electrolyte membrane fuel cells. Springer International Publishing, Switzerland, pp 151–167

    Chapter  Google Scholar 

  22. Chung TS (1997) A critical review of polybenzimidazoles: historical development and future R&D. J Macromol Sci Rev Macromol Chem Phys C37:277–301

    Google Scholar 

  23. Leykin AY, Askadskii AA, Vasilev VG et al (2010) Dependence of some properties of phosphoric acid doped PBIs on their chemical structure. J Membr Sci 347:69–74

    Article  Google Scholar 

  24. Walba H, Isensee RW (1961) Acidity constants of some arylimidazoles and theier cations. J Org Chem 26:2789–2791

    Article  Google Scholar 

  25. Aili D, Hansen MK, Renzaho RF et al (2013) Heterogeneous anion conducting membranes based on linear and crosslinked KOH doped polybenzimidazole for alkaline water electrolysis. J Membr Sci 447:424–432

    Article  Google Scholar 

  26. Aili D, Jankova KJ, Li Q et al (2015) The stability of poly(2,2′-(m-phenylene)-5,5′-bibenzimidazole) membranes in aqueous potassium hydroxide. J Membr Sci 492:422–429

    Article  Google Scholar 

  27. Kraglund MR, Aili D, Jankova K et al (2016) Zero-gap alkaline water electrolysis using ion-solvating polymer electrolyte membranes at reduced KOH concentrations. J Electrochem Soc 163(11):F3125–F3131

    Article  Google Scholar 

  28. Li Q, Pan C, Jensen JO (2007) Cross-linked polybenzimidazole membranes for fuel cells. Chem Mater 19:350–352

    Article  Google Scholar 

  29. Yang J, Aili D, Li Q et al (2013) Covalently cross-linked sulfone polybenzimidazole membranes by poly (vinylbenzyl chloride) for fuel cell applications. Chemsuschem 6(2):275–282

    Article  Google Scholar 

  30. Yang J, Li Q, Cleemann LN et al (2013) Cross-linked hexafluoropropylidene polybenzimidazole membranes with chloromethyl polysulfone for fuel cell applications. Adv Energy Mater 3:622–630

    Article  Google Scholar 

  31. Aili D, Li Q, Christensen et al (2011) Crosslinking of polybenzimidazolemembranes by divinylsulfone post-treatment for high-temperature proton exchange membrane fuel cell applications. Polym Int 60(8):1201–1207

    Google Scholar 

  32. Vogel H, Marvel CS (1961) Polybenzimidazoles, new thermally stable polymers. J Polym Sci 50(154):511–539

    Google Scholar 

  33. Gillham JK (1963) Polymer structure: cross-linking of a polybenzimidazole. Science 139(3554):494–495

    Article  Google Scholar 

  34. Aili D, Cleemann LN, Li Q et al (2012) Thermal curing of PBI membranes for high temperature PEM fuel cells. J Mater Chem 22:5444–5453

    Article  Google Scholar 

  35. Søndergaard T, Cleemann LN, Becker H (2017) Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole. J Power Sources 342:570–578

    Article  Google Scholar 

  36. Kerres J, Schönberger F, Chromik A et al (2008) Partially fluorinated arylene polyethers and their ternary blend membranes with PBI and H3PO4. Part I. Synthesis and characterisation of polymers and binary blend membranes. Fuel Cells 8(3–4):175–187

    Article  Google Scholar 

  37. Li Q, Jensen JO, Pan C et al (2008) Partially fluorinated aarylene polyethers and their ternary blends with PBI and H3PO4. Part II. Characterisation and fuel cell tests of the ternary membranes. Fuel Cells 8(3–4):188–199

    Article  Google Scholar 

  38. Aili D, Jensen JO, Li Q (2016) Polybenzimidazole membranes by post acid doping. In: Li Q et al (eds) High temperature polymer electrolyte membrane fuel cells. Springer International Publishing, Switzerland, pp 195–215

    Chapter  Google Scholar 

  39. Fishel K, Qian G, Benicewicz BC (2016) PBI membranes via the PPA process. In: Li Q et al (eds) High temperature polymer electrolyte membrane fuel cells. Springer International Publishing, Switzerland, pp 217–238

    Chapter  Google Scholar 

  40. Yu S, Zhang H, Xiao L et al (2009) Synthesis of poly (2,2′-(1,4-phenylene) 5,5′-bibenzimidazole) (para-PBI) and phosphoric acid doped membrane for fuel cells. Fuel Cells 9:318–324

    Article  Google Scholar 

  41. Linares JJ, Battirola LC, Lobato J (2016) PBI-based composite membranes. In: Li Q et al (eds) High temperature polymer electrolyte membrane fuel cells. Springer International Publishing, Switzerland, pp 275–295

    Chapter  Google Scholar 

  42. Jones DJ, Rozière J (2008) Advances in the development of inorganic–organic membranes for fuel cell applications. In: Scherer GG (ed) Fuel cells I. Advance polymer science, vol 215. Springer, Berlin, Heidelberg, pp 219–264

    Google Scholar 

  43. Lobato J, Cañizares P, Rodrigo MA et al (2011) A novel titanium PBI-based composite membrane for high temperature PEMFCs. J Membr Sci 369:105–111

    Article  Google Scholar 

  44. Pinar FJ, Cañizares P, Rodrigo MA et al (2015) Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes. J Power Sources 274:177–185

    Article  Google Scholar 

  45. Namazi H, Ahmadi H (2011) Improving the proton conductivity and water uptake of polybenzimidazole-based proton exchange nanocomposite membranes with TiO2 and SiO2 nanoparticles chemically modified surfaces. J Power Sources 196:2573–2583

    Article  Google Scholar 

  46. Suryani Liu Y-L (2009) Preparation and properties of nanocomposite membranes of polybenzimidazole/sulfonated silica nanoparticles for proton exchange membranes. J Membr Sci 332:121–128

    Article  Google Scholar 

  47. Kurdakova V, Quartarone E, Mustarelli P et al (2010) PBI-based composite membranes for polymer fuel cells. J Power Sources 195:7765–7769

    Article  Google Scholar 

  48. Chuang SW, Hsu SLC, Liu YH (2007) Synthesis and properties of fluorine-containing polybenzimidazole/silica nanocomposite membranes for proton exchange membrane fuel cells. J Membr Sci 305(1–2):353–363

    Article  Google Scholar 

  49. Plackett D, Siu A, Li QF et al (2011) High-temperature proton exchange membranes based on polybenzimidazole and clay composites for fuel cells. J Membr Sci 383:78–87

    Article  Google Scholar 

  50. Hsu SLC, Chang KC (2002) Synthesis and properties of polybenzoxazoleclay nanocomposites. Polymer 43:4097–4101

    Article  Google Scholar 

  51. Chuang SW, Hsu SLC, Hsu CL (2007) Synthesis and properties of fluorinecontaining polybenzimidazole/montmorillonite nanocomposite membranes for direct methanol fuel cell applications. J Power Sources 168:172–177

    Article  Google Scholar 

  52. He RH, Li QF, Xiao G et al (2003) Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. J Membr Sci 226:169–184

    Article  Google Scholar 

  53. Yamazaki Y, Jang MY, Taniyama T (2004) Proton conductivity of zirconium tricarboxybutylphosphonate/PBI nanocompositemembrane. Sci Technol Adv Mater 5:455–459

    Article  Google Scholar 

  54. Jang MY, Yamazaki Y (2005) Preparation and characterization of composite membranes composed of zirconium tricarboxybutylphosphonate and polybenzimidazole for intermediate temperature operation. J Power Sources 139:2–8

    Article  Google Scholar 

  55. Heo P, Kajiyama N, Kobayashi K (2008) Proton conduction in Sn0.95Al0.05P2O7–PBI–PTFE composite membrane. Electrochem Solid State Lett 11:B91–B95

    Article  Google Scholar 

  56. Asensio JA, Borros S, Gomez-Romero P (2003) Electrochem Commun 5:967

    Article  Google Scholar 

  57. Gómez-Romero P, Asensio JA, Borrós S (2005) Hybrid proton-conducting membranes for polymer electrolyte fuel cells: phosphomolybdic acid doped poly(2,5-benzimidazole)—(ABPBI-H3PMo12O40). Electrochim Acta 50:4715–4720

    Article  Google Scholar 

  58. Staiti P, Minutoli M, Hocevar S (2000) Membranes based on phosphotungstic acid and polybenzi-midazole for fuel cell application. J Power Sources 90:231–235

    Article  Google Scholar 

  59. He R, Li Q, Xiao G et al (2003) Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. J Membr Sci 226:169–184

    Article  Google Scholar 

  60. Verma A, Scott K (2010) Development of high-temperature PEMFC based on heteropolyacids and polybenzimidazole. J Solid State Electrochem 14:213–219

    Article  Google Scholar 

  61. He R, Li Q, Xiao G et al (2003) Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. J Membr Sci 226:169–184

    Article  Google Scholar 

  62. Staiti P (2001) Proton conductive membranes based on silicotungstic acid/silica and polybenzimidazole. Mater Lett 47:241–246

    Article  Google Scholar 

  63. Staiti P (2001) Proton conductive membranes constituted of silicotungstic acid anchored to silica-polybenzimidazole matrices. J New Mater Electrochem Sys 4:181–186

    Google Scholar 

  64. Staiti P, Minutoli M (2001) Influence of composition and acid treatment on proton conduction of composite polybenzimidazole membranes. J Power Sources 94:9–13

    Article  Google Scholar 

  65. Lee JW, Khan SB, Akhtar K et al (2012) Fabrication of composite membrane based on silicotungstic heteropolyacid doped polybenzimidazole for high temperature PEMFC. Int J Electrochem Sci 7:6276–6288

    Google Scholar 

  66. Tang HL, Pan M, Jiang SP (2011) Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells. Dalton Trans 40:5220–5227

    Article  Google Scholar 

  67. Aili D, Zhang J, Jakobsen MTD et al (2014) Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200 °C. J Mater Chem 4A:4019–4024

    Google Scholar 

  68. Zhang J, Aili D, Bradley J et al (2018) In situ formed phosphoric acid/phosphosilicate nanoclusters in the exceptional enhancement of durability of polybenzimidazole membrane fuel cells at elevated high temperatures. J Electrochem Soc 164:F1615–F1625

    Article  Google Scholar 

  69. Hu S, Lozada-Hidalgo M, Wang FC et al (2014) Proton transport through one-atom-thick crystals. Nature 516:227–230

    Article  Google Scholar 

  70. Coleman JN, Khan U, Blau WJ et al (2006) Small but strong: a review of the mechanical properties of car-bon nanotube–polymer composites. Carbon 1360(44):1624–1652

    Article  Google Scholar 

  71. Suryani Chang C-M, Liu Y-L et al (2011) Polybenzimidazole membranes modified with polyelectrolyte-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells. J Mater Chem 21:7480–7486

    Article  Google Scholar 

  72. Wu J-F, Lo C-F, Li L-Y et al (2014) Thermally stable polybenzimidazole/carbon nano-tube composites for alkaline direct methanol fuel cell applications. J Power Sources 246:39–48

    Article  Google Scholar 

  73. Lu Y, Chen J, Cui H et al (2008) Doping of carbon fiber into polybenzimidazole matrix and mechanical properties of structural carbon fiber-doped polybenzimidazole composites. Compos Sci Technol 68:3278–3284

    Article  Google Scholar 

  74. Kannan R, Kagalwala HN, Chaudhari HD et al (2011) Improved performance of phosphonated carbon nanotube-polybenzimidazole composite membranes in proton exchange membrane fuel cells. J Mater Chem 21(7223–7231):1384

    Google Scholar 

  75. Li N, Zhang F, Wang J et al (2009) Dispersions of carbon nanotubes in sulfonated poly[bis(benzimidazobenzisoquinolinones)] and their proton-conducting composite membranes. Polymer 50:3600–3608

    Article  Google Scholar 

  76. Zarrin H, Higgins D, Jun Y et al (2011) Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J Phys Chem C 115:20774–20781

    Article  Google Scholar 

  77. Xu C, Liu X, Cheng J et al (2015) A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. J Power Sources 274:922–927

    Article  Google Scholar 

  78. Zhang N, Wang BL, Zhang YR et al (2014) Mechanically reinforced phosphoric acid doped quaternized poly(ether ether ketone) membranes via cross-linking with functionalized graphene oxide. Chem Comm 50:15381–15384

    Article  Google Scholar 

  79. He Y, Wang J, Zhang H et al (2014) Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions. J Mater Chem A 2(25):9548–9558

    Article  Google Scholar 

  80. Karim MR, Hatakeyama K, Matsui T et al (2013) Graphene oxide nanosheet with high proton conductivity. J Am Chem Soc 135:8097–8100

    Article  Google Scholar 

  81. Tateishi H, Hatakeyama K, Ogata C et al (2013) J Electrochem Soc 160(11):F1175–F1178

    Article  Google Scholar 

  82. Chen D, Tang L, Li J (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180

    Article  Google Scholar 

  83. Xue C, Zou J, Sun Z et al (2014) Graphite oxide/functionalized graphene oxide and polybenzimidazole composite membranes for high temperature proton exchange membrane fuel cells. Int J Hydrogen Energy 39:7931–7939

    Article  Google Scholar 

  84. Wang Y, Shi Z, Fang J et al (2011) Direct exfoliation of graphene in methanesulfonic acid and facile synthesis of graphene/polybenzimidazole nanocomposites. J Mater Chem 21:505–512

    Article  Google Scholar 

  85. Üregen N, Pehlivanoglu K, Özdemir Y et al (2017) Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells. Int J Hydrogen Energy 42:2636–2647

    Article  Google Scholar 

  86. Yang J, Liu C, Gao L et al (2015) Novel composite membranes of triazole modified graphene oxide and polybenzimidazole for high temperature polymer electrolyte membrane fuel cell applications. RSC Adv 5:101049–101054

    Article  Google Scholar 

  87. Xu CX, Liu XT, Cheng JG et al (2015) A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. J Power Sources 274:922–927

    Article  Google Scholar 

  88. Wang C, Lin B, Qiao G et al (2016) Polybenzimidazole/ionic liquid functionalized graphene oxide nanocomposite membrane for alkaline anion exchange membrane fuel cells. Mater Lett 173:219–222

    Article  Google Scholar 

  89. Zhang N, Wang B, Zhang Y et al (2014) Mechanically reinforced phosphoric acid doped quaternized poly(ether ether ketone) membranes via cross-linking with functionalized graphene oxide. Chem Commun 50:15381–15384

    Article  Google Scholar 

  90. Cai Y, Yue Z, Xu S (2017) A novel polybenzimidazole composite modified by sulfonated graphene oxide for high temperature proton exchange membrane fuel cells in anhydrous atmosphere. J Appl Polym Sci 134(25):44986–44993

    Article  Google Scholar 

  91. Xu C, Cao Y, Kumar R et al (2011) A polybenzi-midazole/sulfonated graphite oxide composite mem-brane for high temperature polymer electrolyte membrane fuel cells. J Mater Chem 21:11359–11364

    Article  Google Scholar 

  92. Wang Y, Yu J, Chen L et al (2013) Nacre-like graphene paper reinforced by polybenzimidazole. RSC Adv 3:20353–20362

    Article  Google Scholar 

  93. Deng Y, Wang G, Fei MM et al (2016) A polybenzimidazole/graphite oxide based three layer membrane for intermediate temperature polymer electrolyte membrane fuel cells. RSC Adv 6(76):72224–72229

    Article  Google Scholar 

  94. Kallitsis JK, Geormezi M, Neophytides SG (2009) Polymer electrolyte membranes for high-temperature fuel cells based on aromatic polyethers bearing pyridine units. Polym Int 58(11):1226–1233

    Article  Google Scholar 

  95. Kallitsis JK, Andreopoulou AK, Daletouet M et al (2016) Pyridine containing aromatic polyether membranes. In: Li Q et al (eds) High temperature polymer electrolyte membrane fuel cells. Springer International Publishing, Switzerland, pp 91–126

    Chapter  Google Scholar 

  96. Papadimitriou KD, Paloukis F, Neophytides SG et al (2011) Cross-linking of side chain unsaturated aromatic polyethers for high temperature polymer electrolyte membrane fuel cell applications. Macromolecules 44:4942–4951

    Article  Google Scholar 

  97. Morfopoulou CI, Andreopoulou AK, Daletou MK et al (2013) Cross-linked high temperature polymer electrolytes through oxadiazole bond formation and their applications in HT PEM fuel cells. J Mater Chem A 1:1613–1622

    Article  Google Scholar 

  98. Carollo A, Quartarone E, Tomasi C et al (2006) Developments of new proton conducting membranes based on different polybenzimidazole structures for fuel cells applications. J Power Sources 160(1):175–180

    Article  Google Scholar 

  99. Kurdakova V, Quartarone E, Mustarelli P et al (2010) PBI-based composite membranes for polymer fuel cells. J Power Sources 195:7765–7769

    Article  Google Scholar 

  100. Gubler L, Kramer D, Belack J et al (2007) A polybenzimidazole-based membrane for the direct methanol fuel cell. J Electrochem Soc 154(9):B981–B987

    Article  Google Scholar 

  101. Lobato J, Cañizares P, Rodrigo MA et al (2008) Performance of a vapor-fed polybenzimidazole (PBI)-based direct methanol fuel cell. Energy Fuels 22:3335–3345

    Article  Google Scholar 

  102. Modestov AD, Tarasevich MR, Pu H (2012) Investigation of methanol electrooxidation on Pt and Pt–Ru in H3PO4 using MEA with PBI–H3PO4 membrane. J Power Sources 205:207–214

    Article  Google Scholar 

  103. Zhao X, Yuan W, Wu Q et al (2015) High-temperature passive direct methanol fuel cells operating with concentrated fuels. J Power Sources 273:517–521

    Article  Google Scholar 

  104. Li L-Y, Yu B-C, Shih C-M et al (2015) Polybenzimidazole membranes for direct methanol fuel cell: acid-doped or alkali-doped? J Power Sources 287:386–395

    Article  Google Scholar 

  105. Jensen JO, Vassiliev A, Olsen MI et al (2012) Direct dimethyl ether fuelling of a high temperature polymer fuel cell. J Power Sources 211:173–176

    Article  Google Scholar 

  106. Wang Y-J, Wilkinson DP, Zhang J (2011) Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem Rev 111(12):7625–7651

    Article  Google Scholar 

  107. Honji A, Mori T, Tamura K et al (1988) Aggloemration of platinum particles supported on carbon in phosphoreic acid. J Electrochem Soc 135:355–359

    Article  Google Scholar 

  108. Bindra P, Clouser SJ, Yeager E (1979) Platinum dissolution in concentrated phosphoric acid. J Electrochem Soc 126:1631–1632

    Article  Google Scholar 

  109. Aragane J, Murahashi T, Odaka T (1988) Change of Pt distribution in the active components of phosphoric acid fuel cell. J Electrochem Soc 135:844–850

    Article  Google Scholar 

  110. Ahluwalia RK, Arisetty S, Wang X et al (2013) Thermodynamics and kinetics of platinum dissolution from carbon-supported electrocatalysts in aqueous media under potentiostatic and potentiodynamic conditions. J Eletrcochem Soc 160:F447–F455

    Article  Google Scholar 

  111. Wang XP, Kumar R, Myers DJ (2006) Effect of voltage on platinum dissolution relevance to polymer electrolyte fuel cells. Electrochem Solid State Lett 9:A225–A227

    Article  Google Scholar 

  112. Aragane J, Urushibata H, Murahashi T (1996) Effect of operational potential on performance decay rate in a phosphoric acid fuel cell. J Appl Electrochem 26:147–152

    Article  Google Scholar 

  113. Kinoshita K (1988) Carbon. Electrochemical and physicochemical properties. Wiley, New York

    Google Scholar 

  114. Roen LM, Paik CH, Jarvic TD (2004) Electrocatalytic corrosion of carbon support in PEMFC cathodes. Electrochem Solid State Lett 7:A19–A22

    Article  Google Scholar 

  115. Oh H-S, Lee J-H, Kim H (2012) Electrochemical carbon corrosion in high temperature proton exchange membrane fuel cells. Inter J Hydrogen Energy 37:10844–10849

    Article  Google Scholar 

  116. Stevens DA, Dahn JR (2005) Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells. Carbon 43:179–188

    Article  Google Scholar 

  117. Oono Y, Fukuda T, Sounai A et al (2010) Influence of operating temperature on cell performance and endurance of high temperature proton exchange membrane fuel cells. J Power Sources 195:1007–1014

    Article  Google Scholar 

  118. Oono Y, Sounai A, Hori M (2012) Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells. J Power Sources 210:366–373

    Article  Google Scholar 

  119. Hartnig C, Schmidt TJ (2011) Simulated start-stop as a rapid aging tool for polymer electrolyte fuel cell electrodes. J Power Sources 196:5564–5572

    Article  Google Scholar 

  120. Søndergaard T, Cleemann LN, Zhong LJ, Becker H, Steenberg T, Hjuler HA, Seerup L, Li QF, Jensen JO (2017) Catalyst degradation under potential cycling as an accelerated stress test for PBI based high temperature PEM fuel cells—effect of humidification. Electrocatalysis. https://doi.org/10.1007/s12678-017-0427-1

    Article  Google Scholar 

  121. Mader J, Xiao L, Schmidt TJ et al (2008) Polybenzimidazole/acid complexes as high-temperature membranes. Adv Polym Sci 216(1):63–124

    Google Scholar 

  122. Schmidt TJ, Baurmeister J (2006) Durability and reliability in high-temperature reformed hydrogen PEFCs. ECS Trans 3:861–869

    Article  Google Scholar 

  123. Oono Y, Sounai A, Hori M (2013) Prolongation of lifetime of high temperature proton exchange membrane fuel cells. J Power Sources 241:87–93

    Article  Google Scholar 

  124. Søndergaard T, Cleemann LN, Becker H et al (2017) Long-term durability of HT-PEM fuel cells based on thermally crosslinked polybenzimidazole. J Power Sources 342:570–578

    Article  Google Scholar 

  125. Søndergaard T, Cleemann LN, Becker H et al (2018) Long term durability of PBI based HT-PEM fuel cells under varied flow rates and temperatures. J Electrochem Soc (in press)

    Google Scholar 

  126. Landsman DA, Luczak FJ (2003) Catalyst studies and coating technologies. In: Vielstichm W et al (eds) Handbook of fuel cells, vol 3. Wiley, pp 811–831

    Google Scholar 

  127. Cleemann LN, Buazar F, Li Q et al (2013) Catalyst degradation in high temperature proton exchange membrane fuel cells based on acid doped polybenzimidazole membranes. Fuel Cells 13:822–831

    Google Scholar 

  128. Okamoto M, Fujigaya T, Nakashima N (2009) Design of an assembly of poly(benzimidazole), carbon nanotubes, and Pt nanoparticles for a fuel-cell electrocatalyst with an ideal interfacial Nanostructure. Small 5:735–740

    Article  Google Scholar 

  129. Fujigaya T, Okamoto M, Nakashima N (2009) Design of an assembly of pyridine-containing polybenzimidazole, carbon nanotubes and Pt nanoparticles for a fuel cell electrocatalyst with a high electrochemically active surface area. Carbon 47:3227–3232

    Article  Google Scholar 

  130. Fujigaya T, Nakashima N (2013) Fuel cell electrocatalyst using polybenzimidazole-modified carbon nanotubes as support materials. Adv Mater 25:1666–1681

    Article  Google Scholar 

  131. Hafez IH, Berber MR, Fujigaya T et al (2014) Enhancement of platinum mass activity on the surface of polymer-wrapped carbon nanotube-based fuel cell electrocatalysts. Sci Rep 4(1):6295

    Article  Google Scholar 

  132. Berber MR, Hafez IH, Fujigaya T et al (2014) Durability analysis of polymer-coated pristine carbon nanotube-based fuel cell electrocatalysts under non-humidified conditions. J Mater Chem A 2:19053–19059

    Article  Google Scholar 

  133. Berber MR, Fujigaya T, Nakashima N (2014) High-temperature polymer electrolyte fuel cell using poly(vinylphosphonic acid) as an electrolyte shows a remarkable durability. ChemCatChem 6:567–571

    Article  Google Scholar 

  134. Fujigaya T, Hirata S, Berber MR et al (2016) Improved durability of electrocatalyst based on coating of carbon black with polybenzimidazole and their application in polymer electrolyte fuel cells. ACS Appl Mater Interfaces 8:14494–14502

    Article  Google Scholar 

  135. Yang Z, Li J, Ling Y et al (2017) Bottom-up design of high-performance pt electrocatalysts supported on carbon nanotubes with homogeneous ionomer distribution. ChemCatChem 9:3307–3313

    Article  Google Scholar 

  136. Yang Z, Luo F (2017) Pt nanoparticles deposited on dihydroxy-polybenzimidazole wrapped carbon nanotubes shows a remarkable durability in methanol electro-oxidation. Int J Hydrogen Energy 42:507–514

    Article  Google Scholar 

  137. Fujigaya T, Shi Y, Yang J et al (2017) A highly efficient and durable carbon nanotube-based anode electrocatalyst for water electrolyzers. J Mater Chem A 5:10584–10590

    Article  Google Scholar 

  138. Lin Y, Liu Q, Fan J et al (2016) Highly dispersed palladium nanoparticles on poly(N1, N3-dimethylbenzimidazolium)iodide functionalized multiwalled carbon nanotubes for ethanol oxidation in alkaline solution. RSC Adv 6:102582–102594

    Article  Google Scholar 

  139. Matsumoto K, Fujigaya T, Yanagi H et al (2011) Very high performance alkali anion-exchange membrane fuel cells. Adv Func Mater 21(6):1089–1094

    Article  Google Scholar 

  140. Fujigaya T, Hirata S, Naotoshi Nakashima (2014) A highly durable fuel cell electrocatalyst based on polybenzimidazole-coated stacked graphene. J Mater Chem A 2(11):3888–3893

    Article  Google Scholar 

  141. Li Z-F, Zhang HY, Yang F et al (2014) Pt catalysts supported on polybenzimidazole-grafted graphene for PEMFCs. ECS Trans 64(3):131–136

    Article  Google Scholar 

  142. Li Z-F, Xin L, Yang F et al (2015) Hierarchical polybenzimidazole-grafted graphene hybrids as supports for Pt nanoparticle catalysts with excellent PEMFC performance. Nano Energy 16:281–292

    Article  Google Scholar 

  143. Xin L, Yang F, Qiu Y et al (2016) Polybenzimidazole (PBI) functionalized nanographene as highly stable catalyst support for polymer electrolyte membrane fuel cells (PEMFCs). J Electrochem Soc 163(10):F1228–F1236

    Article  Google Scholar 

  144. Zeng L, Zhao TS, An L et al (2015) A high-performance sandwiched-porous polybenzimidazole membrane with enhanced alkaline retention for anion exchange membrane fuel cells. Energy Environ Sci 8:2768–2774

    Article  Google Scholar 

  145. Boaventura M, Brandaõ L, Mendes A (2011) Single-wall nanohorns as electrocatalyst support for high temperature PEM fuel cells. J Electrochem Soc 158(4):B394–B401

    Article  Google Scholar 

  146. Jasinski R (1964) A new fuel cell catalyst. Nature 201:1212–1213

    Article  Google Scholar 

  147. Chen Z, Higgins D, Yu A et al (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci 4:3167–3192

    Article  Google Scholar 

  148. Nie Y, Li L, Wei Z (2015) Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 44:2168–2201

    Article  Google Scholar 

  149. Xia ZH, An L, Chen PK et al (2016) Non-Pt nanostructured catalysts for oxygen reduction reaction: synthesis, catalytic activity and its key factors. Adv Energy Mater 6(17):1600458

    Google Scholar 

  150. Banham D, Ye S, Pei K et al (2015) A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J Power Sources 285:334–348

    Article  Google Scholar 

  151. Kramm UI, Lefèvre M, Larouche N et al (2014) Correlations between mass activity and physicochemical properties of Fe/N/C catalysts for the ORR in PEM fuel cell via Fe-57 mossbauer spectroscopy and other techniques. J Am Chem Soc 136(3):978–985

    Article  Google Scholar 

  152. Chung HT, Cullen DA, Higgins D et al (2017) Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 357:479–484

    Article  Google Scholar 

  153. Shui J, Chen C, Grabstanowicz L et al (2015) Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network. Proc Natl Acad Sci 112:10629–10634

    Article  Google Scholar 

  154. Chung HT, Cullen DA, Higgins D et al (2017) Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 357:479–484

    Article  Google Scholar 

  155. Lefevre M, Proietti E, Jaouen F et al (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324:71–74

    Article  Google Scholar 

  156. Proietti E, Jaouen F, Lefevre M et al (2011) Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nature Com 2(1):416

    Article  Google Scholar 

  157. Zelenay P, Scharifker BR, Bockris JO et al (1986) Comparison of the properties of CF3SO3H and H3PO4 in relation to fuel-cells. J Electrochem Soc 133:2262–2267

    Article  Google Scholar 

  158. Zelenay P, Habib MA, Bockris JO’M (1986) Adsorption from solution on platinum: an in situ FTIR and radiotracer study. Langmuir 2:393–405

    Google Scholar 

  159. He Q, Yang X, Chen W et al (2010) Influence of phosphate anion adsorption on the kinetics of oxygen electroreduction on low index Pt(hkl) single crystals. Phys Chem Chem Phys 12:12544–12555

    Article  Google Scholar 

  160. Zecevic SK, Wainright JS, Litt MH et al (1997) Kinetics of O2 reduction on a Pt electrode covered with a thin film of solid polymer electrolyte. J Electrochem Soc 144:2973–2982

    Article  Google Scholar 

  161. Liu ZY, Wainright JS, Savinell RF (2004) High-temperature polymer electrolytes for PEM fuel cells: study of the oxygen reduction reaction (ORR) at a Pt-polymer electrolyte interface. Chem Eng Sci 59:4833–4838

    Article  Google Scholar 

  162. Liu ZY, Wainright JS, Litt MH et al (2006) Study of the oxygen reduction reaction (ORR) at Pt interfaced with phosphoric acid doped polybenzimidazole at elevated temperature and low relative humidity. Electrochim Acta 51:3914–3923

    Article  Google Scholar 

  163. Zhang J, Tang Y, Song C et al (2006) Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120–200 °C. J Power Sources 172:163–171

    Article  Google Scholar 

  164. Neyerlin KC, Singh A, Chu D (2008) Kinetic characterization of a Pt-Ni/C catalyst with a phosphoric acid doped PBI membrane in a proton exchange membrane fuel cell. J Power Sources 176:112–117

    Article  Google Scholar 

  165. Li Q, Wu G, Cullen DA et al (2014) Phosphate-tolerant oxygen reduction catalysts. ACS Catal 4:3193–3200

    Google Scholar 

  166. Hu Y, Jensen JO, Zhang W et al (2014) Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angew Chem Int Ed 53(14):3675–3679

    Article  Google Scholar 

  167. Wang Q, Zhou ZY, Lai YJ et al (2014) Phenylenediamine-based FeNx/C catalyst with high activity for oxygen reduction in acid medium and its active-site probing. J Am Chem Soc 136:10882–10885

    Article  Google Scholar 

  168. Gupta S, Fierro C, Yeager E (1991) The effects of cyanide on the electrochemical properties of transition metal macrocycles for oxygen reduction in alkaline solutions. J Electroanal Chem Interf Electrochem 306:239–250

    Article  Google Scholar 

  169. Zhong L, Jensen JO, Cleemann LN et al (2017) Electrochemical probing into the active sites of graphitic-layer encapsulated iron oxygen reduction reaction electrocatalysts. Sci Bull. https://doi.org/10.1016/j.scib.2017.11.017

    Article  Google Scholar 

  170. Kannan A, Li Q, Cleemann LN et al (2018) Acid distribution and durability of HT-PEM fuel cells with different electrode supports. Accepted for publication in Fuel cells

    Google Scholar 

  171. Martin S, Li Q, Steenberg T et al (2014) Binderless electrodes for high-temperature polymer electrolyte membrane fuel cells. J Power Sources 272:559–566

    Article  Google Scholar 

  172. Martin S, Jensen JO, Li Q (2015) Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes. J Power Sources 293:51–56

    Article  Google Scholar 

  173. Kundler I, Hickmann T (2016) Bipolar plates and gaskets: different materials and processing methods. In: Li Q et al (eds) High temperature polymer electrolyte membrane fuel cells. Springer International Publishing, Switzerland, pp 1–4

    Google Scholar 

  174. Li QF, He RH, Jensen JO et al (2003) Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chem Mater 15(26):4896–4915

    Article  Google Scholar 

  175. Chandan A, Hattenberger M, El-kharouf A et al (2013) High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)—a review. J Power Sources 231:264–278

    Article  Google Scholar 

  176. Li QF, He RH, Jensen JO et al (2003) Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chem Mater 15(26):4896–4915

    Article  Google Scholar 

  177. Quartarone E, Angioni S, Mustarelli P (2017) Polymer and composite membranes for proton-conducting, high-temperature fuel cells: a critical review. Materials 10(7):687

    Article  Google Scholar 

  178. Haque MA, Sulong AB, Loh KS et al (2017) Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell: a review. Int J Hydrogen Energy 42(14):9156–9179

    Article  Google Scholar 

  179. Rosli RE, Sulong AB, Daud WRW et al (2017) A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. Int J Hydrogen Energy 42(14):9293–9314

    Article  Google Scholar 

  180. Araya SS, Zhou F, Liso V et al (2016) A comprehensive review of PBI-based high temperature PEM fuel cells. Int J Hydrogen Energy 41(46):21310–21344

    Article  Google Scholar 

  181. Zeis R (2015) Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells. Beilstein J Nanotechnol 6:68–83

    Article  Google Scholar 

  182. Subianto S (2014) Recent advances in polybenzimidazole/phosphoric acid membranes for high-temperature fuel cells. Polym Int 63:1134–1144

    Article  Google Scholar 

  183. Li Q, Aili D, Hjuler HA et al (eds) (2016) High temperature polymer electrolyte membrane fuel cells. Springer International Publishing, Switzerland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Oluf Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jensen, J.O., Aili, D., Hu, Y., Cleemann, L.N., Li, Q. (2019). High-Temperature Polymer Electrolyte Membrane Fuel Cells. In: Nakashima, N. (eds) Nanocarbons for Energy Conversion: Supramolecular Approaches. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-92917-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92917-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92915-6

  • Online ISBN: 978-3-319-92917-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics