Skip to main content

Carbon Nanotube-Based Thermoelectric Devices

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Thermoelectric (TE) conversion is one of the key technologies to realize a sustainable society since large quantities of energy [1, 2] have been wasted as heat [3]; therefore recovery of heat into electricity via TE technology is quite attractive.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hochbaum AI, Chen RK, Delgado RD, Liang WJ, Garnett EC, Najarian M, Majumdar A, Yang PD (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451:163–167

    Article  Google Scholar 

  2. Wang Q, Yao Q, Chang J, Chen L (2012) Enhanced thermoelectric properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains. J Mater Chem 22:17612–17618

    Article  Google Scholar 

  3. Zebarjadi M, Esfarjani K, Dresselhaus MS, Ren ZF, Chen G (2012) Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ Sci 5:5147–5162

    Article  Google Scholar 

  4. Vineis CJ, Shakouri A, Majumdar A, Kanatzidis MG (2010) Nanostructured thermoelectrics: big efficiency gains from small features. Adv Mater 22:3970–3980

    Article  Google Scholar 

  5. Sootsman JR, Chung DY, Kanatzidis MG (2009) New and old concepts in thermoelectric materials. Angew Chem Int Ed 48:8616–8639

    Article  Google Scholar 

  6. Dubey N, Leclerc M (2011) Conducting polymers: efficient thermoelectric materials. J Polym Sci Part B: Polym Phys 49:467–475

    Article  Google Scholar 

  7. Poehler TO, Katz HE (2012) Prospects for polymer-based thermoelectrics: state of the art and theoretical analysis. Energy Environ Sci 5:8110–8115

    Article  Google Scholar 

  8. Zhang Q, Sun Y, Xu W, Zhu D (2014) Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently. Adv Mater. https://doi.org/10.1002/adma.201305371

  9. Chortos A, Bao Z (2014) Skin-inspired electronic devices. Mater Today 17:321–331

    Article  Google Scholar 

  10. Cornell BA, Braach-Maksvytis VLB, King LG, Osman PDJ, Raguse B, Wieczorek L, Pace RJ (1997) A biosensor that uses ion-channel switches. Nature 387:580–583

    Article  Google Scholar 

  11. Bahk J-H, Fang H, Yazawa K, Shakouri A (2015) Flexible thermoelectric materials and device optimization for wearable energy harvesting. J Mater Chem C 3:10362–10374

    Article  Google Scholar 

  12. Kim SJ, We JH, Cho BJ (2014) A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ Sci 7:1959–1965

    Article  Google Scholar 

  13. DiSalvo FJ (1999) Thermoelectric cooling and power generation. Science 285:703–706

    Article  Google Scholar 

  14. Liu W, Yan X, Chen G, Ren Z (2012) Recent advances in thermoelectric nanocomposites. Nano Energy 1:42–56

    Article  Google Scholar 

  15. Siddique ARM, Mahmud S, Heyst BV (2017) A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renew Sustain Energy Rev 73:730–744

    Article  Google Scholar 

  16. Wan C, Gu X, Dang F, Itoh T, Wang Y, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder GJ, Yang R, Koumoto K (2015) Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat Mater 14:622–627

    Article  Google Scholar 

  17. Nonoguchi Y, Ohashi K, Kanazawa R, Ashiba K, Hata K, Nakagawa T, Adachi C, Tanase T, Kawai T (2013) Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants. Sci Rep 3:3344

    Article  Google Scholar 

  18. Suemori K, Hoshino S, Kamata T (2013) Flexible and lightweight thermoelectric generators composed of carbon nanotube-polystyrene composites printed on film substrate. Appl Phys Lett 103:153902

    Article  Google Scholar 

  19. Pang H, Xu L, Yan D-X, Li Z-M (2014) Conductive polymer composites with segregated structures. Prog Polym Sci 39:1908–1933

    Article  Google Scholar 

  20. He M, Qiu F, Lin Z (2013) Towards high-performance polymer-based thermoelectric materials. Energy Environ Sci 6:1352–1361

    Article  Google Scholar 

  21. Wei Q, Mukaida M, Kirihara K, Naitoh Y, Ishida T (2015) Recent progress on PEDOT-based thermoelectric materials. Materials 8:732–750

    Article  Google Scholar 

  22. Meng CZ, Liu CH, Fan SS (2010) A promising approach to enhanced thermoelectric properties using carbon nanotube networks. Adv Mater 22:535–539

    Article  Google Scholar 

  23. Kim D, Kim Y, Choi K, Grunlan JC, Yu CH (2010) Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). ACS Nano 4:513–523

    Article  Google Scholar 

  24. Moriarty GP, De S, King PJ, Khan U, Via M, King JA, Coleman JN, Grunlan JC (2013) Thermoelectric behavior of organic thin film nanocomposites. J Polym Sci Part B: Polym Phys 51:119–123

    Article  Google Scholar 

  25. Bounioux C, Diaz-Chao P, Campoy-Quiles M, Martin-Gonzalez MS, Goni AR, Yerushalmi-Rozene R, Muller C (2013) Thermoelectric composites of poly(3-hexylthiophene) and carbon nanotubes with a large power factor. Energy Environ Sci 6:918–925

    Article  Google Scholar 

  26. Baibarac M, Baltog I, Lefrant S (2010) In: Nanostructured conductive polymers, pp 209–260

    Google Scholar 

  27. Yao Q, Chen L, Zhang W, Liufu S, Chen X (2010) Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. ACS Nano 4:2445–2451

    Article  Google Scholar 

  28. Meng C, Liu C, Fan S (2010) A promising approach to enhanced thermoelectric properties using carbon nanotube networks. Adv Mater 22:535–539

    Article  Google Scholar 

  29. Liu J, Sun J, Gao L (2011) Flexible single-walled carbon nanotubes/polyaniline composite films and their enhanced thermoelectric properties. Nanoscale 3:3616–3619

    Article  Google Scholar 

  30. Yao Q, Wang Q, Wang L, Chen L (2014) Abnormally enhanced thermoelectric transport properties of SWNT/PANI hybrid films by the strengthened PANI molecular ordering. Energy Envison Sci 7:3801–3807

    Article  Google Scholar 

  31. Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114

    Article  Google Scholar 

  32. Clingman WH (1961) Entropy production and optimum device design. Adv Energy Convers 1:61–79

    Article  Google Scholar 

  33. Zhang Q, Sun Y, Xu W, Zhu D (2014) Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently. Adv Mater 26:6829–6851

    Article  Google Scholar 

  34. Avery AD, Zhou BH, Lee J, Lee E-S, Miller EM, Ihly R, Wesenberg D, Mistry KS, Guillot SL, Zink BL, Kim Y-H, Blackburn JL, Ferguson AJ (2016) Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nat Energy 1:16033

    Article  Google Scholar 

  35. Nakai Y, Honda K, Yanagi K, Kataura K, Kato T, Yamamoto T, Maniwa Y (2014) Giant Seebeck coefficient in semiconducting single-wall carbon nanotube film. Appl Phys Express 7:025103

    Article  Google Scholar 

  36. Dey A, Bajpai OP, Sikder AK, Chattopadhyay S, Shafeeuulla Khan MA (2016) Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: a proficient move towards waste energy harvesting. Renew Sustain Energy Rev 53:653–671

    Article  Google Scholar 

  37. Nakai Y, Honda K, Yanagi K, Kataura H, Kato T, Yamamoto T, Maniwa Y (2014) Giant Seebeck coefficient in semiconducting single-wall carbon nanotube film. Appl Phys Express 7:025103

    Article  Google Scholar 

  38. Lee RS, Kim HJ, Fischer JE, Thess A, Smalley RE (1997) Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature 388:255–257

    Article  Google Scholar 

  39. Klinke C, Chen J, Afzali A, Avouris P (2005) Charge transfer induced polarity switching in carbon nanotube transistors. Nano Lett 5:555–558

    Article  Google Scholar 

  40. Barnes TM, Blackburn JL, van de Lagemaat J, Coutts TJ, Heben MJ (2008) Reversibility, dopant desorption, and tunneling in the temperature-dependent conductivity of type-separated, conductive carbon nanotube networks. ACS Nano 2:1968–1976

    Article  Google Scholar 

  41. Yu M, Tian WQ, Jayanthi CS, Wu SY (2011) The effect of humidity on the adsorption of the hydrazine on single-wall carbon nanotubes: first-principles electronic structure calculations. Chem Phys Lett 518:93–98

    Article  Google Scholar 

  42. Yu C, Murali A, Choi K, Ryu Y (2012) Air-stable fabric thermoelectric modules made of N- and P-type carbon nanotubes. Energy Environ Sci 5:9481–9486

    Article  Google Scholar 

  43. Kim SL, Choi K, Tazebay A, Yu C (2014) Flexible power fabrics made of carbon nanotubes for harvesting thermoelectricity. ACS Nano 8:2377–2386

    Article  Google Scholar 

  44. Shimizu R, Matsuzaki S, Yanagi K, Takenobu T (2012) Optical signature of charge transfer in n-type carbon nanotube transistors doped with printable organic molecules. Appl Phys Express 5:125102

    Article  Google Scholar 

  45. Hewitt CA, Montgomery DS, Barbalace RL, Carlson RD, Carroll DL (2014) Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites. J Appl Phys 115:184502

    Article  Google Scholar 

  46. Piao M, Joo MK, Choi JH, Shin JM, Moon YS, Kim GT, Dettlaff-Weglikowska U (2015) Evaluation of power generated by thermoelectric modules comprising a p-type and n-type single walled carbon nanotube composite paper. RSC Adv 5:78099–78103

    Article  Google Scholar 

  47. Bark H, Lee W, Lee H (2015) Enhanced thermoelectric performance of CNT thin film p/n junctions doped with N-containing organic molecules. Macromol Res 23:795–801

    Article  Google Scholar 

  48. Montgomery DS, Hewitt CA, Barbalace R, Jones T, Carroll DL (2016) Spray doping method to create a low-profile high-density carbon nanotube thermoelectric generator. Carbon 96:778–781

    Article  Google Scholar 

  49. Kang BR, Yu WJ, Kim KK, Park HK, Kim SM, Park Y, Kim G, Shin HJ, Kim UJ, Lee EH, Choi JY, Lee YH (2009) Restorable type conversion of carbon nanotube transistor using pyrolytically controlled antioxidizing photosynthesis coenzyme. Adv Funct Mater 19:2553–2559

    Article  Google Scholar 

  50. Kim SM, Jang JH, Kim KK, Park HK, Bae JJ, Yu WJ, Lee IH, Kim G, Loc DD, Kim UJ, Lee EH, Shin HJ, Choi JY, Lee YH (2009) Reduction-controlled viologen in bisolvent as an environmentally stable n-type dopant for carbon nanotubes. J Am Chem Soc 131:327–331

    Article  Google Scholar 

  51. Wang HL, Wei P, Li YX, Han J, Lee HR, Naab BD, Liu N, Wang CG, Adijanto E, Tee BCK, Morishita S, Li QC, Gao YL, Cui Y, Bao ZN (2014) Tuning the threshold voltage of carbon nanotube transistors by n-type molecular doping for robust and flexible complementary circuits. Proc Natl Acad Sci USA 111:4776–4781

    Article  Google Scholar 

  52. Wu G, Zhang Z-G, Li Y, Gao C, Wang X, Chen G (2017) Exploring high-performance n-type thermoelectric composites using amino-substituted rylene dimides and carbon nanotubes. ACS Nano 11:5746–5752

    Article  Google Scholar 

  53. Xia D, Jiang S, Liu C, Fan S, Chen L (2015) A demo solar thermoelectric conversion device based on Bi2Te3 and carbon nanotubes. Sol Energy Mater 141:331–336

    Article  Google Scholar 

  54. Zhao W, Tan HT, Tan LP, Fan S, Hng HH, Boey YCF, Beloborodov I, Yan Q (2014) N-type carbon nanotubes/silver telluride nanohybrid buckypaper with a high-thermoelectric figure of merit. ACS Appl Mater Interfaces 6:4940–4946

    Article  Google Scholar 

  55. Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials (nobel lecture). Angew Chem Int Ed 40:2591–2611

    Article  Google Scholar 

  56. Mai C-K, Russ B, Fronk SL, Hu N, Chan-Park MB, Urban JJ, Segalman RA, Chabinyc ML, Bazan GC (2015) Varying the ionic functionalities of conjugated polyelectrolytes leads to both p- and n-type carbon nanotube composites for flexible thermoelectrics. Energy Environ Sci 8:2341–2346

    Article  Google Scholar 

  57. Savage T, Bhattacharya S, Sadanadan B, Gaillard J, Tritt TM, Sun YP, Wu Y, Nayak S, Car R, Marzari N, Ajayan PM, Rao AM (2003) Photoinduced oxidation of carbon nanotubes. J Phys: Condens Matter 15:5915

    Google Scholar 

  58. Geier ML, McMorrow JJ, Xu W, Zhu J, Kim CH, Marks TJ, Hersam MC (2015) Solution-processed carbon nanotube thin-film complementary static random access memory. Nat Nanotechol 10:944

    Article  Google Scholar 

  59. MacLeod BA, Stanton NJ, Gould IE, Wesenberg D, Ihly R, Owczarczyk ZR, Hurst KE, Fewox CS, Folmar CN, Holman Hughes K, Zink BL, Blackburn JL, Ferguson AJ (2017) Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films. Energy Environ Sci 10:2168–2179

    Article  Google Scholar 

  60. Shim M, Javey A, Shi Kam NW, Dai H (2001) Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J Am Chem Soc 123:11512–11513

    Article  Google Scholar 

  61. Li LJ, Khlobystov AN, Wiltshire JG, Briggs GAD, Nicholas RJ (2005) Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes. Nat Mater 4:481–485

    Article  Google Scholar 

  62. Li XK, Guard LM, Jiang J, Sakimoto K, Huang JS, Wu JG, Li JY, Yu LQ, Pokhrel R, Brudvig GW, Ismail-Beigi S, Hazari N, Taylor AD (2014) Controlled doping of carbon nanotubes with metallocenes for application in hybrid carbon nanotube/Si Solar cells. Nano Lett 14:3388–3394

    Article  Google Scholar 

  63. Takenobu T, Takano T, Shiraishi M, Murakami Y, Ata M, Kataura H, Achiba Y, Iwasa Y (2003) Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nat Mater 2:683–688

    Article  Google Scholar 

  64. Zhu X-Q, Zhang M-T, Yu A, Wang C-H, Cheng J-P (2008) Hydride, hydrogen atom, proton, and electron transfer driving forces of various five-membered heterocyclic organic hydrides and their reaction intermediates in acetonitrile. J Am Chem Soc 130:2501–2516

    Article  Google Scholar 

  65. Wei P, Menke T, Naab BD, Leo K, Riede M, Bao Z (2012) 2-(2-methoxyphenyl)-1,3-dimethyl-1H-benzoimidazol-3-ium iodide as a new air-stable n-type dopant for vacuum-processed organic semiconductor thin films. J Am Chem Soc 134:3999–4002

    Article  Google Scholar 

  66. Wei P, Liu N, Lee HR, Adijanto E, Ci L, Naab BD, Zhong JQ, Park J, Chen W, Cui Y, Bao Z (2013) Tuning the dirac point in CVD-grown graphene through solution processed n-type doping with 2-(2-methoxyphenyl)-1,3-dimethyl-2,3-dihydro-1H-benzoimidazole. Nano Lett 13:1890–1897

    Article  Google Scholar 

  67. Wang H, Wei P, Li Y, Han J, Lee HR, Naab BD, Liu N, Wang C, Adijanto E, Tee BC-K, Morishita S, Li Q, Gao Y, Cui Y, Bao Z (2014) Tuning the threshold voltage of carbon nanotube transistors by n-type molecular doping for robust and flexible complementary circuits. Proc Natl Acad Sci USA 111:4776–4781

    Article  Google Scholar 

  68. Byon HR, Suntivich J, Shao-Horn Y (2011) Graphene-based non-noble-metal catalysts for oxygen reduction reaction in acid. Chem Mater 23:3421–3428

    Article  Google Scholar 

  69. Grigorian L, Sumanasekera GU, Loper AL, Fang S, Allen JL, Eklund PC (1998) Transport properties of alkali-metal-doped single-wall carbon nanotubes. Phys Rev B 58:R4195–R4198

    Article  Google Scholar 

  70. Nakashima Y, Nakashima N, Fujigaya T (2017) Development of air-stable n-type single-walled carbon nanotubes by doping with 2-(2-methoxyphenyl)-1,3-dimethyl-2,3-dihydro-1H-benzo[d]imidazole and their thermoelectric properties. Synth Met 225:76–80

    Article  Google Scholar 

  71. Fukumaru T, Fujigaya T, Nakashima N (2015) Development of n-type cobaltocene-encapsulated carbon nanotubes with remarkable thermoelectric property. Sci Rep 5

    Google Scholar 

  72. Chikashita H, Itoh K (1986) AlCl3-promoted conjugate reduction of αβ unsaturated carbonyl compounds with 1,3-dimethyl-2-phenylbenzimidazoline. Bull Chem Soc Jpn 59:1747–1752

    Article  Google Scholar 

  73. Chikashita H, Ide H, Itoh K (1986) 1,3-dimethyl-2-phenylbenzimidazoline as a novel and efficient reagent for mild reductive dehalogenation of alpha.-halo carbonyl compounds and acid chlorides. J Org Chem 51:5400–5405

    Article  Google Scholar 

  74. Schwarz DE, Cameron TM, Hay PJ, Scott BL, Tumas W, Thorn DL (2005) Hydrogen evolution from organic “hydrides”. Chem Commun 5919–5921

    Google Scholar 

  75. Tamaki Y, Koike K, Morimoto T, Ishitani O (2013) Substantial improvement in the efficiency and durability of a photocatalyst for carbon dioxide reduction using a benzoimidazole derivative as an electron donor. J Catal 304:22–28

    Article  Google Scholar 

  76. Wei P, Oh JH, Dong G, Bao Z (2010) Use of a 1H-benzoimidazole derivative as an n-type dopant and to enable air-stable solution-processed n-channel organic thin-film transistors. J Am Chem Soc 132:8852–8853

    Article  Google Scholar 

  77. Kim SS, Bae S, Jo WH (2015) Performance enhancement of planar heterojunction perovskite solar cells by n-doping of the electron transporting layer. Chem Commun 51:17413–17416

    Article  Google Scholar 

  78. Nonoguchi Y, Nakano M, Murayama T, Hagino H, Hama S, Miyazaki K, Matsubara R, Nakamura M, Kawai T (2016) Simple salt-coordinated n-type nanocarbon materials stable in air. Adv Funct Mater 26:3021–3028

    Article  Google Scholar 

  79. Nonoguchi Y, Tani A, Ikeda T, Goto C, Tanifuji N, Uda R M, Kawai T (2017) Water-processable, air-stable organic nanoparticle–carbon nanotube nanocomposites exhibiting n-type thermoelectric properties. Small 13:1603420-n/a

    Google Scholar 

  80. Sahoo S, Chitturi VR, Agarwal R, Jiang J-W, Katiyar RS (2014) Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy. ACS Appl Mater Interfaces 6:19958–19965

    Article  Google Scholar 

  81. Prasher RS, Hu XJ, Chalopin Y, Mingo N, Lofgreen K, Volz S, Cleri F, Keblinski P (2009) Turning carbon nanotubes from exceptional heat conductors into insulators. Phys Rev Lett 102:105901

    Article  Google Scholar 

  82. Hung NT, Nugraha ART, Hasdeo EH, Dresselhaus MS, Saito R (2015) Diameter dependence of thermoelectric power of semiconducting carbon nanotubes. Phys Rev B 92:165426

    Article  Google Scholar 

  83. Lyons PE, De S, Blighe F, Nicolosi V, Pereira LFC, Ferreira MS, Coleman JN (2008) The relationship between network morphology and conductivity in nanotube films. J Appl Phys 104:044302

    Article  Google Scholar 

  84. Nirmalraj PN, Lyons PE, De S, Coleman JN, Boland JJ (2009) Electrical connectivity in single-walled carbon nanotube networks. Nano Lett 9:3890–3895

    Article  Google Scholar 

  85. Mustonen K, Laiho P, Kaskela A, Susi T, Nasibulin AG, Kauppinen EI (2015) Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors. Appl Phys Lett 107:143113

    Article  Google Scholar 

  86. Mitsuhiro I, Naofumi O, Ryo A, Hirotaka K, Ryosuke M, Ichiro Y, Masakazu N (2014) Enhancement of thermoelectric properties of carbon nanotube composites by inserting biomolecules at nanotube junctions. Appl Phys Express 7:065102

    Article  Google Scholar 

  87. Yu C, Choi K, Yin L, Grunlan JC (2011) Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. ACS Nano 5:7885–7892

    Article  Google Scholar 

  88. An CJ, Kang YH, Lee AY, Jang K-S, Jeong Y, Cho SY (2016) Foldable thermoelectric materials: improvement of the thermoelectric performance of directly spun CNT webs by individual control of electrical and thermal conductivity. ACS Appl Mater Interfaces 8:22142–22150

    Article  Google Scholar 

  89. Hida S, Hori T, Shiga T, Elliott J, Shiomi J (2013) Thermal resistance and phonon scattering at the interface between carbon nanotube and amorphous polyethylene. Int J Heat Mass Transf 67:1024–1029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyohiko Fujigaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fujigaya, T. (2019). Carbon Nanotube-Based Thermoelectric Devices. In: Nakashima, N. (eds) Nanocarbons for Energy Conversion: Supramolecular Approaches. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-92917-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92917-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92915-6

  • Online ISBN: 978-3-319-92917-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics