Skip to main content

Carbon Nanotube-Based Direct Methanol Fuel Cell Catalysts

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

The development of a durable and methanol-tolerant electrocatalyst with a high oxidation reduction reaction (ORR) activity is still a significant and important challenge. In this chapter, we focus on the use of carbon nanotubes and mesoporous carbon as well as carbon black for comparison as a carbon support for direct methanol fuel cells (DMFCs) since they are electrochemically stable. Here such stable nanocarbons are wrapped by polymer (polybenzimidazole) , and the wrapped nanocarbons/Pt catalysts exhibited high methanol tolerance , high CO-tolerance in methanol oxidation reaction, suggesting that the catalysts are important for an anode material for use in DMFCs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP (2006) A review of anode catalysis in the direct methanol fuel cell. J Power Sources 155:95–110

    Article  Google Scholar 

  2. Neburchilov V, Martin J, Wang H, Zhang J (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169:221–238

    Article  Google Scholar 

  3. Zhao X, Yin M, Liang M, Liang L, Liu C, Liao J, Luc T, Xing W (2011) Recent advances in catalysts for direct methanol fuel cells. Energy Environ Sci 4:2736–2753

    Article  Google Scholar 

  4. Li X, Faghri A (2013) Review and advances of direct methanol fuel cells (DMFCs) Part I: Design, fabrication, and testing with high concentration methanol solutions. J Power Sources 226:223–240

    Article  Google Scholar 

  5. Huang H, Wang X (2014) Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. J Mater Chem A 2:6626–6291

    Google Scholar 

  6. Mehmood A, Scibioh MA, Prabhuram J, An M-G, Ha HY (2015) A review on durability issues and restoration techniques in long-term operations of direct methanol fuel cells. J Power Sources 297:224–241

    Article  Google Scholar 

  7. Thimmappa R, Aralekallu S, Devendrachari MC, Kottaichamy AR, Bhat ZM, Shafi SP, Lokesh KS, Thotiyl MO (2017) Adv Mater Interfaces 4:no 1700321

    Google Scholar 

  8. Franceschini EA, Bruno MM, Viva FA, Williams FJ, Jobbágy M, Corti HR (2012) Mesoporous Pt electrocatalyst for methanol tolerant cathodes of DMFC. Electrochim Acta 71:173–180

    Article  Google Scholar 

  9. Liu M, Lu Y, Chen W (2013) PdAg nanorings supported on graphene nanosheets: highly methanol-tolerant cathode electrocatalyst for alkaline fuel cells. Adv Funct Mater 23:1289–1296

    Article  Google Scholar 

  10. Sekol RC, Li X, Cohen P, Doubek G, Carmo M, Taylor AD (2013) Silver palladium core-shell electrocatalyst supported on MWNTs for ORR in alkaline media. Appl Catal B 138–139:285–293

    Article  Google Scholar 

  11. Colmenares L, Jusys Z, Behm RJ (2007) Activity, selectivity, and methanol tolerance of Se-modified Ru/C cathode catalysts. J Phys Chem C 111:1273–1283

    Article  Google Scholar 

  12. Choi JH, Johnston CM, Cao D, Babu PK, Zelenay P (2011) Se-modified Ru nanoparticles as ORR catalysts: Part 2: Evaluation for use as DMFC cathodes. J Electroanal Chem 662:267–273

    Article  Google Scholar 

  13. Gharibi H, Golmohammadi F, Kheirmand M (2013) Fabrication of MEA based on optimum amount of Co in PdxCo/C alloy nanoparticles as a new cathode for oxygen reduction reaction in passive direct methanol fuel cells. Electrochim Acta 89:212–221

    Article  Google Scholar 

  14. Li X, Huang Q, Zou Z, Xia B, Yang H (2008) Low temperature preparation of carbon-supported Pd-Co alloy electrocatalysts for methanol-tolerant oxygen reduction reaction. Electrochim Acta 53:6662–6667

    Article  Google Scholar 

  15. Yu JS, Kim MS, Kim JH (2010) Combinatorial discovery of new methanol-tolerant non-noble metal cathode electrocatalysts for direct methanol fuel cells. Phys Chem Chem Phys 12:15274–15281

    Article  Google Scholar 

  16. Schmidt TJ, Paulus UA, Gasteiger HA, Alonso-Vante N, Behm RJ (2000) Oxygen reduction on Ru1.92Mo0.08SeO4, Ru/carbon, and Pt/carbon in pure and methanol-containing electrolytes. J Electrochem Soc 147:2620–2624

    Article  Google Scholar 

  17. Gao MR, Gao Q, Jiang J, Cui CH, Yao WT, Yu SH (2011) A methanol-tolerant Pt/CoSe2 nanobelt cathode catalyst for direct methanol fuel cells. Angew Chem Int Ed 50:4905–4908

    Article  Google Scholar 

  18. Selvarani G, Maheswari S, Sridhar P, Pitchumani S, Shukla AK (2009) Carbon-supported Pt-TiO2 as a methanol-tolerant oxygen-reduction catalyst for DMFCs. J Electrochem Soc 156:B1354–B1360

    Article  Google Scholar 

  19. Selvarani GS, Selvaganesh V, Krishnamurthy S, Kiruthika GVM, Sridhar P, Pitchumani S, A. Shukla AK (2009) A methanol-tolerant carbon-supported Pt-Au alloy cathode catalyst for direct methanol fuel cells and its evaluation by DFT. J Phys Chem C 113:7461–7468

    Google Scholar 

  20. Wang J, Yin G, Liu H, Li R, Flemming RL, Sun X (2009) Carbon nanotubes supported Pt–Au catalysts for methanol-tolerant oxygen reduction reaction: a comparison between Pt/Au and PtAu nanoparticles. J Power Sources 194:668–673

    Article  Google Scholar 

  21. Cochell T, Li W, Manthiram A (2013) Effects of Pt coverage in Pt@PdCu5/C core-shell electrocatalysts on the oxygen reduction reaction and tolerance. J Phys Chem C 117:3865–3873

    Article  Google Scholar 

  22. Nishanth KG, Sridhar P, Pitchumani S, Shukla AK (2011) A DMFC with methanol-tolerant-carbon-supported-Pt-Pd-alloy cathode. J Electrochem Soc 158:B871–B876

    Article  Google Scholar 

  23. Yang H, Alonso-Vante N, Léger JM, Lamy C (2004) Tailoring, structure, and activity of carbon-supported nanosized Pt-Cr alloy electrocatalysts for oxygen reduction in pure and methanol-containing electrolytes. J Phys Chem B 108:1938–1947

    Article  Google Scholar 

  24. Maillard F, Martin M, Gloaguen F, Léger JM (2002) Oxygen electroreduction on carbon-supported platinum catalysts. Particle-size effect on the tolerance to methanol competition. Electrochim Acta 47:3431–3440

    Article  Google Scholar 

  25. Drillet JF, Ee A, Friedemann J, Kötz R, Schnyder B, Schmidt VM (2002) Oxygen reduction at Pt and Pt70Ni30 in H2SO4/CH3OH solution. Electrochim Acta 47:1983–1988

    Article  Google Scholar 

  26. Yang H, Coutanceau C, Léger JM, Alonso-Vante N, Lamy C (2005) Methanol tolerant oxygen reduction on carbon-supported Pt-Ni alloy nanoparticles. J Electroanal Chem 576:305–313

    Article  Google Scholar 

  27. Lima FHB, Lizcano-Valbuena WH, Teixeira-Neto E, Nart FC, Gonzalez ER, Ticianelli EA (2006) Pt-Co/C nanoparticles as electrocatalysts for oxygen reduction in H2SO4 and H2SO4/CH3OH electrolytes. Electrochim Acta 52:385–393

    Article  Google Scholar 

  28. Salgado JRC, Antolini E, Gonzalez ER (2005) Carbon supported Pt–Co alloys as methanol-resistant oxygen-reduction electrocatalysts for direct methanol fuel cells. Appl Catal B 57:283–290

    Article  Google Scholar 

  29. Stephens IEL, Bondarenko AS, Gronbjerg U, Rossmeisl J, Chorkendorff I (2012) Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ Sci 5:6744–6762

    Article  Google Scholar 

  30. Hwang SJ, Hwangn SJ, Kim S-K, Lee J-G, Lee S-C, Jang JH, Kim P, Lim T-H, Sung Y-E, Yoo SJ (2012) Role of electronic perturbation in stability and activity of Pt-based alloy nanocatalysts for oxygen reduction. J Am Chem Soc 134:19508–19511

    Article  Google Scholar 

  31. Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J Am Chem Soc 128:8813–8819

    Article  Google Scholar 

  32. Wang S, Cochell T, Manthiram A (2012) Boron-doped carbon nanotube-supported Pt nanoparticles with improved CO tolerance for methanol electro-oxidation. Phys Chem Chem Phys 14:13910–13913

    Article  Google Scholar 

  33. Feng Y, Liu H, Yang J (2017) A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol. Sci Adv 3:e1700580

    Article  Google Scholar 

  34. Yang Z, Nakashima N (2016) An electrocatalyst based on carbon nanotubes coated with poly(vinylpyrrolidone) shows a high tolerance to carbon monoxide (CO) in a direct methanol fuel cell. ChemCatChem 8:600–606

    Article  Google Scholar 

  35. Yang Z, Nagashima A, Fujigaya T, Nakashima N (2016) Electrocatalyst composed of platinum nanoparticles deposited on doubly polymer-coated carbon nanotubes shows a high CO-tolerance in methanol oxidation reaction. Internat J Hydrogen Energy 41:19182–19190

    Article  Google Scholar 

  36. Yang Z, Hafez IH, Berber MR, Nakashima N (2015) An enhanced anode based on polymer-coated carbon black for use as a direct methanol fuel cell electrocatalyst. ChemCatChem 7:808–813

    Article  Google Scholar 

  37. Yang Z, Nakashima N (2015) A simple preparation of very high methanol tolerant cathode electrocatalyst for direct methanol fuel cell based on polymer-coated carbon nanotube/platinum. Sci Rep 5:no 12236

    Google Scholar 

  38. Yang Z, Berber MR, N. Nakashima N (2014) Polymer-coated carbon black-based fuel cell electrocatalyst with high CO-tolerance and durability in direct methanol oxidation. J Mater Chem A 2:18875–18880

    Google Scholar 

  39. Li Y, Zhu E, McLouth T, Chiu CY, Huang X, Huang Y (2012) Stabilization of high-performance oxygen reduction reaction Pt electrocatalyst supported on reduced graphene oxide/carbon black composite. J Am Chem Soc 134:12326–12329

    Article  Google Scholar 

  40. Wang D, Wang D, Xin HL, Hovden R, Wang H, Yu Y, Muller DA, DiSalvo FJ, Abruña HD (2013) Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat Mater 12:81–87

    Google Scholar 

  41. He G, Song Y, Liu K, Walter A, Chen S, Chen S (2013) Oxygen reduction catalyzed by platinum nanoparticles supported on graphene quantum dots. ACS Catal 3:831–838

    Article  Google Scholar 

  42. Guo S, Sun S (2012) FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. J Am Chem Soc 134:2492–2495

    Article  Google Scholar 

  43. Matsumoto K, Fujigaya T, Yanagi H, Nakashima N (2011) Very high performance alkali anion-exchange membrane fuel cells. Adv Funct Mater 21:1089–1094

    Article  Google Scholar 

  44. Fujigaya T, Okamoto M, Matsumoto K, Kaneko K, Nakashima N (2013) Interfacial engineering of platinum catalysts for fuel cells: methanol oxidation is dramatically improved by polymer coating on a platinum catalyst. ChemCatChem 5:1701–1704

    Article  Google Scholar 

  45. Liu M, Lu Y, Chen W (2013) PdAg nanorings supported on graphene nanosheets: highly methanol-tolerant cathode electrocatalyst for alkaline fuel cells. Adv Funct Mater 23:1289–1296

    Article  Google Scholar 

  46. Lee M, Uchida M, Okaya K, Uchida H, Watanabe M (2011) Durability of Pt/graphitized carbon catalyst prepared by the nanocapsule method for the start/stop operating condition of polymer electrolyte fuel cells. Electrochemistry 79:381–387

    Article  Google Scholar 

  47. Yano H, Akiyama T, Bele P, Uchida H, Watanabe M (2010) Durability of Pt/graphitized carbon catalysts for the oxygen reduction reaction prepared by the nanocapsule method. Phys Chem Chem Phys 12:3806–3814

    Article  Google Scholar 

  48. Gu Y-J, Wong W-T (2006) Nanostructure PtRu/MWNTs as anode catalysts prepared in a vacuum for direct methanol oxidation. Langmuir 22:11447–11452

    Article  Google Scholar 

  49. Koenigsmann C, Wong SS (2013) Tailoring chemical composition to achieve enhanced methanol oxidation reaction and methanol-tolerant oxygen reduction reaction performance in palladium-based nanowire systems. ACS Catal 3:2031–2040

    Article  Google Scholar 

  50. Yu LH, Kuo CH, Yeh CT (2007) Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells. J Am Chem Soc 129:9999–10010

    Article  Google Scholar 

  51. Ding L-X, Wang A-L, Li G-R, Liu Z-Q, Zhao W-X, Su C-Y et al (2012) Porous Pt-Ni-P composite nanotube arrays: highly electroactive and durable catalysts for methanol electrooxidation. J Am Chem Soc 134:5730–5733

    Article  Google Scholar 

  52. Pu H, Liu Q, Qiao L, Z. Yang Z (2005) Studies on proton conductivity of acid doped polybenzimidazole/polyimide and polybenzimidazole/polyvinylpyrrolidone blends. Polym Eng Sci 45:1395–1400

    Google Scholar 

  53. Yang Z, Kim C, Hirata S, Fujigaya T, Nakashima N (2015) Facile enhancement in CO-tolerance of a polymer-coated Pt electrocatalyst supported on carbon black-comparison between Vulcan and Ketjenblack. ACS Appl Mater Interfaces 7:15885–15891

    Article  Google Scholar 

  54. Speder J, Zana Spanos AI, Kirkensgaard JJK, Mortensen K, Hanzlik M, Arenz M (2014) Comparative degradation study of carbon supported proton exchange membrane fuel cell electrocatalysts—the influence of the platinum to carbon ratio on the degradation rate. J Power Sources 261:14–22

    Article  Google Scholar 

  55. Hafez IH, Berber MR, Fujigaya T, Nakashima N (2014) Enhancement of platinum mass activity on the surface of polymer-wrapped carbon nanotube-based fuel cell. Electrocatalysts Sci Rep 4:no 6295

    Google Scholar 

  56. Sun X, Li D, Ding Y, Zhu W, Guo S, Wang ZL, Sun S (2014) Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reaction. J Am Chem Soc 136:5745–5749

    Article  Google Scholar 

  57. Guo S, Dong S, Wang E (2010) Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 4:547–555

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naotoshi Nakashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakashima, N. (2019). Carbon Nanotube-Based Direct Methanol Fuel Cell Catalysts. In: Nakashima, N. (eds) Nanocarbons for Energy Conversion: Supramolecular Approaches. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-92917-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92917-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92915-6

  • Online ISBN: 978-3-319-92917-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics