Skip to main content

Microbial Fuel Cell Research Using Animal Waste: A Feebly-Explored Area to Others

  • Chapter
  • First Online:
Book cover Microbial Fuel Cell Technology for Bioelectricity

Abstract

Microbial fuel cell is a fast-growing technology and method for the energy recovery from wastewater treatment. The technology is so tempting that still researchers are carrying this out because of its potential benefits and other important resources. This chapter has attempted to focus on the production of energy from various sources such as domestic waste, industrial waste, animal waste and sewage waste. Though there are more sources that are widely exploited in the anodic chamber, usage of animal waste has been limited hitherto. Hence, a brief introduction of animal waste used in MFC in terms of renewable energy has been provided to the readers. The pros and cons of using animal waste have to be kept in mind before using them in the microbial fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeniran JA, Huberts R, De-Koker JJ, Arotiba OA, Olorundare OF, Van-Zyl E, Du-Plessis SC (2016) Energy generation from domestic wastewater using sandwich dual-chamber microbial fuel cell with mesh current collector cathode. Int J Environ Sci Technol 13(9):2209–2218

    Article  CAS  Google Scholar 

  • Aelterman P, Rabaey K, Clauwaert P, Verstraete W (2006) Microbial fuel cells for wastewater treatment. Water Sci Technol 54(8):9–15

    Article  CAS  Google Scholar 

  • Aelterman P, Versichele M, Marzorati M, Boon N, Verstraete W (2008) Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresour Technol 99:8895–8902

    Article  CAS  Google Scholar 

  • Ahn Y, Logan BE (2010) Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour Technol 101(2):469–475

    Article  CAS  Google Scholar 

  • Akman D, Cirik K, Ozdemir S, Ozkaya B, Cinar O (2013) Bioelectricity generation in continuously-fed microbial fuel cell: effects of anode electrode material and hydraulic retention time. Bioresour Technol 149:459–464

    Article  CAS  Google Scholar 

  • Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domíguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22(9):477–485

    Article  CAS  Google Scholar 

  • Antonopoulo G, Stamatelatou K, Beblis S, Lyberatos G (2010) Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell. Biochem Eng J 50:10–15

    Article  Google Scholar 

  • Burke S, Heathwaite L, Quinn P, Merrett S, Whitehead P, Preedy N, Lerner D, Saul A (2003) Strategic management of non-point source pollution from sewage sludge. Water Sci Technol 47(8):305–310

    Article  CAS  Google Scholar 

  • Capodaglio AG, Molognoni D, Dallago E, Liberale A, Cella R, Longoni P et al (2013) Microbial fuel cells for direct electrical energy recovery from urban wastewaters. Sci World J https://doi.org/10.1155/2013/634738 2013:1–8

    Article  Google Scholar 

  • Capodaglio AG, Molognoni D, Puig S, Balaguer MD, Colprim J (2015) Role of operating conditions on energetic pathways in a microbial fuel cell. Energy Procedia 74:728–735

    Article  CAS  Google Scholar 

  • Cercado-Quezada B, Delia ML, Bergel A (2010) Testing various food-industry wastes for electricity production in microbial fuel cell. Bioresour Technol 101:2748–2754

    Article  CAS  Google Scholar 

  • Cerrillo M, Oliveras J, Viñas M, Bonmatí A (2016) Comparative assessment of raw and digested pig slurry treatment in bioelectrochemical systems. Bioelectrochemistry 110:69–78

    Article  CAS  Google Scholar 

  • Chen M, Kim JH, Kishida N, Nishimura O, Sudo R (2004) Enhanced nitrogen removal using C/N load adjustment and real-time control strategy in sequencing batch reactors for swine wastewater treatment. Water Sci Technol 49:309–314

    Article  CAS  Google Scholar 

  • Chiu HY, Pai TY, Liu MH, Chang CA, Lo FC, Chang TC, Lo HM, Chiang CF, Chao KP, Lo WY, Lo SW (2016) Electricity production from municipal solid waste using microbial fuel cells. Waste Manag Res 34(7):619–629.

    Article  CAS  Google Scholar 

  • Colombo A, Schievano A, Trasatti SP, Morrone R, D’Antona N, Cristiani P (2017) Signal trends of microbial fuel cells fed with different food-industry residues. Int J Hydrog Energy 19;42(3):1841–1852

    Article  CAS  Google Scholar 

  • Cusick RD, Kiely PD, Logan BE (2010) A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters. Int J Hydrog Energy 35(17):8855–8861

    Article  CAS  Google Scholar 

  • Cusido JA, Cremades LV, Gonzalez M (2003) Gaseous emissions from ceramics manufactured with urban sewage sludge during firing processes. Waste Manag 23(3):273–280

    Article  CAS  Google Scholar 

  • Dalvi AD, Mohandas N, Shinde OA, Kininge PT (2011) Microbial fuel cell for production of bioelectricity from whey and biological wastewater. Int J Adv Biotechnol Res 2:263–268

    CAS  Google Scholar 

  • Deepika J, Meignanalakshmi S, Thilagaraj RW (2015) The optimization of parameters for increased electricity production by a microbial fuel cell using rumen fluid. Int J Green Energy 12(4):333–338

    Article  CAS  Google Scholar 

  • Dentel SK, Strogen B, Sharma A, Chiu P (2004) Direct generation of electricity from sludges and other liquid wastes. In: Proceedings, IWA conference on resources from sludge, Singapore, March 2–3

    Google Scholar 

  • Donovan C, Dewan A, Peng H, Heo D, Beyenal H (2011) Power management system for a 2.5 W remote sensor powered by a sediment microbial fuel cell. J Power Sources 196(3):1171–1177

    Article  CAS  Google Scholar 

  • Du ZW, Li HR, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482

    Article  CAS  Google Scholar 

  • Dumas C, Mollica A, Féron D, Basséguy R, Etcheverry L, Bergel A (2007) Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials. Electrochim Acta 53(2):468–473

    Article  CAS  Google Scholar 

  • Elakkiya E, Matheswaran M (2013) Comparison of anodic metabolisms in bioelectricity production during treatment of dairy wastewater in microbial fuel cell. Bioresour Technol 136:407–412

    Article  CAS  Google Scholar 

  • Fava F, Totaro G, Diels L, Reis M, Duarte J, Carioca OB, Poggi-Varaldo HM, Ferreira BS (2013) Biowaste biorefinery in Europe: opportunities and research & development needs. New Biotechnol 32(1):100–108

    Article  Google Scholar 

  • Fornero JJ, Rosenbaum M, Angenent LT (2010) Electric power generation from municipal, food, and animal wastewaters using microbial fuel cells. Electroanalysis 22(7–8):832–843

    Article  CAS  Google Scholar 

  • Gadhamshetty V, Koratkar N (2012) Nano-engineered biocatalyst-electrode structures for next generation microbial fuel cells. Nano Energy 1(1):35

    Article  Google Scholar 

  • Gelegenis J, Georgakakis D, Angelidaki I, Mavris V (2007) Optimization of biogas production by co-digesting whey with diluted poultry manure. Renew Energy 32:2147–2160

    Article  CAS  Google Scholar 

  • Goud RK, Babu PS, Mohan SV (2011) Canteen based composite food waste as potential anodic fuel for bioelectricity generation in single chambered microbial fuel cell (MFC): bio-electrochemical evaluation under increasing substrate loading condition. Int J Hydrog Energy 36:6210e8

    Article  Google Scholar 

  • Guzman JJ, Cooke KG, Gay MO, Radachowsky SE, Girguis PR, Chiu MA (2010) Benthic microbial fuel cells: Long-term power sources for wireless marine sensor networks. In: Sensors, and command, control, communications, and intelligence (C3I) technologies for homeland security and homeland defense IX, vol. 7666. International Society for Optics and Photonics, p 76662M

    Google Scholar 

  • Hamamoto K, Miyahara M, Kouzuma A, Matsumoto A, Yoda M, Ishiguro T, Watanabe K (2016) Evaluation of microbial fuel cells for electricity generation from oil-contaminated wastewater. J Biosci Bioeng 122(5):589–593

    Article  CAS  Google Scholar 

  • Hamelers HM, Heijne A, Sleutels TJA, Jeremiasse A, Strik DBTB, Buisman CN (2010) New applications and performance of bioelectrochemical systems. Appl Microbiol Biotechnol 85:1673–1685

    Article  CAS  Google Scholar 

  • Hobson PN, Stewart CS (1997) The rumen microbial ecosystem. Blackie Academic & Professional, New York, pp 10–72

    Book  Google Scholar 

  • Hwang MH, Jang NJ, Hyun SH, Kim IS (2004) Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH. J Biotechnol 111:297–309

    Article  CAS  Google Scholar 

  • Ieropoulos I, Winfield J, Greenman J (2010) Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells. Bioresour Technol 101:3520–3525

    Article  CAS  Google Scholar 

  • Jadhav GS, Ghangrekar MM (2009) Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour Technol 100(2):717–723

    Article  CAS  Google Scholar 

  • Jafary T, Rahimnejad M, Ghoreyshi AA, Najafpour G, Hghparast F, Daud WRW (2013) Assessment of bioelectricity production in microbial fuel cells through series and parallel connections. Energy Convers Manag 75:256–262

    Article  CAS  Google Scholar 

  • Jiang J, Zhao Q, Zhang J, Zhang G, Lee DJ (2009) Electricity generation from bio-treatment of sewage sludge with microbial fuel cell. Bioresour Technol 100(23):5808–5812

    Article  CAS  Google Scholar 

  • Kassongo J, Togo CA (2010) The potential of whey in driving microbial fuel cells: a dual prospect of energy recovery and remediation. Afr J Biotechnol 9(46):7885–7890

    Article  CAS  Google Scholar 

  • Katuri KP, Enright AM, O’Flaherty V, Leech D (2012) Microbial analysis of anodic biofilm in a microbial fuel cell using slaughterhouse wastewater. Bioelectrochemistry 87:164–171

    Article  CAS  Google Scholar 

  • Kaur A, Boghani HC, Michie I, Dinsdale RM, Guwy AJ, Premier GC (2014) Inhibition of methane production in microbial fuel cells: operating strategies which select electrogens over methanogens. Bioresour Technol 173:75–81

    Article  CAS  Google Scholar 

  • Kim JH, Chen M, Kishida N, Sudo R (2004) Integrated real-time control strategy for nitrogen removal in swine wastewater treatment using sequencing batch reactors. Water Res 38:3340–3348

    Article  CAS  Google Scholar 

  • Kim JR, Dec J, Bruns MA, Logan BE (2008a) Removal of odors from swine wastewater by using microbial fuel cells. Appl Environ Microbiol 74(8):2540–2543

    Article  CAS  Google Scholar 

  • Kim JR, Zuo Y, Regan JM, Logan BE (2008b) Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater. Biotechnol Bioeng 99(5):1120–1127

    Article  CAS  Google Scholar 

  • Kumar GG, Sarathi VGS, Nahm KS (2013) Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosens Bioelectron 43:461–475

    Article  CAS  Google Scholar 

  • Lasik M, Nowak J, Krzywonos M, Cibis E (2010) Impact of batch, repeated-batch (with cell recycle and medium replacement) and continuous processes on the course and efficiency of aerobic thermophilic biodegradation of potato processing wastewater. Bioresour Technol 101:3444–3451

    Article  CAS  Google Scholar 

  • Lee JW, Cha HY, Park KY, Song KG, Ahn KH (2005) Operational strategies for an activated sludge process in conjunction with ozone oxidation for zero excess sludge production during winter season. Water Res 39(7):1199–1204

    Article  CAS  Google Scholar 

  • Lefebvre O, Tan Z, Shen Y, Ng HY (2013) Optimization of a microbial fuel cell for wastewater treatment using recycled scrap metals as a cost-effective cathode material. Bioresour Technol 127:158–164

    Article  CAS  Google Scholar 

  • Levis JW, Barlaz MA (2011) What is the most environmentally beneficial way to treat commercial food waste? Environ Sci Technol 45(17):7438–7444

    Article  CAS  Google Scholar 

  • Li WW, Sheng GP, Liu XW, Cai PJ, Sun M, Xiao X, Wang YK, Tong ZH, Dong F, Yu HQ (2011) Impact of a static magnetic field on the electricity production of Shewanella-inoculated microbial fuel cells. Biosens Bioelectron 26(10):3987–3992

    Article  CAS  Google Scholar 

  • Linke B (2006) Kinetic study of thermophilic anaerobic digestion of solid wastes from potato processing. Biomass Bioenergy 30:892–896

    Article  CAS  Google Scholar 

  • Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046

    Article  CAS  Google Scholar 

  • Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337(6095):686–690

    Article  CAS  Google Scholar 

  • Logan BE, Regan JM (2006) Microbial fuel cells-challenges and applications. Environ Sci Technol 40(17):5172–5180

    Article  CAS  Google Scholar 

  • Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4(7):497–508

    Article  CAS  Google Scholar 

  • Luo A, Zhu J, Ndegwa PM (2002) Removal of carbon, nitrogen, and phosphorus in pig manure by continuous and intermittent aeration at low redox potentials. Biosyst Eng 82:209–215

    Article  Google Scholar 

  • Mardanpour MM, Esfahany MN, Behzad T, Sedaqatvand R (2012) Single chamber microbial fuel cell with spiral anode for dairy wastewater treatment. Biosens Bioelectron 38(1):264–269

    Article  Google Scholar 

  • Min B, Kim J, Oh S, Regan JM, Logan BE (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39(20):4961–4968

    Article  CAS  Google Scholar 

  • Molognoni D, Puig S, Balaguer MD, Capodaglio AG, Callegari A, Colprim J (2016) Multiparametric control for enhanced biofilm selection in microbial fuel cells. J Chem Technol Biotechnol 91(6):1720–1727

    Article  CAS  Google Scholar 

  • Moqsud MA, Omine K, Yasufuku N, Bushra QS, Hyodo M, Nakata Y (2014) Bioelectricity from kitchen and bamboo waste in a microbial fuel cell. Waste Manag Res 32(2):124–130

    Article  CAS  Google Scholar 

  • Nasirahmadi S, Safekordi AA (2011) Whey as a substrate for generation of bioelectricity in microbial fuel cell using E. coli. Int J Environ Sci Technol 8(4):823–830

    Article  CAS  Google Scholar 

  • Nastro RA, Dumontet S, Ulgiati S, Falcucci G, Vadursi M, Jannelli E, Minutillo M, Cozzolino R, Trifuoggi M, Erme G, De Santis E (2013) Microbial fuel cells fed by solid organic waste: a preliminar experimental study. In: European fuel cell. Piero Lunghi Conference & Exhibition – Rome, 11–13 December

    Google Scholar 

  • Offner A, Sauvant D (2006) Thermodynamic modeling of ruminal fermentations. Anim Res 55(5):343–365

    Article  CAS  Google Scholar 

  • Oladejo D, Shoewu OO, Yussouff AA, Rapheal H (2015) Evaluation of electricity generation from animal based wastes in a microbial fuel cell. Int J Sci Technol Res 4(4):85–90

    Google Scholar 

  • Oliveira VB, Simões M, Melo LF, Pinto AMFR (2013) Overview on the developments of microbial fuel cells. Biochem Eng J 73:53–64

    Article  Google Scholar 

  • Pant D, Singh A, Van Bogaert G, Singh Nigam P, Diels L, Vanbroekhoven K (2012) Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv 2:1248–1263

    Article  CAS  Google Scholar 

  • Poggi-Varaldo HM, Munoz-Paez KM, Escamilla-Alvarado C, Robledo-Narváez PN, Ponce-Noyola MT, Calva-Calva G, Ríos-Leal E, Galíndez-Mayer J, Estrada-Vázquez C, Ortega-Clemente A, Rinderknecht-Seijas NF (2014) Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review. Waste Manag Res 32(5):353–365

    Article  Google Scholar 

  • Puig S, Serra M, Coma M, Balaguer MD, Colprim J (2011) Simultaneous domestic wastewater treatment and renewable energy production using microbial fuel cells (MFCs). Water Sci Technol 64:904–909

    Article  CAS  Google Scholar 

  • Ra CS, Lo KV, Shin JS, Oh JS, Hong BJ (2000) Biological nutrient removal with an internal organic carbon source in piggery wastewater treatment. Water Res 34:965–973

    Article  CAS  Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298

    Article  CAS  Google Scholar 

  • Reimers CE, Tender LM, Fertig S, Wang W (2001) Harvesting energy from the marine sediment-water interface. Environ Sci Technol 35:192–195

    Article  CAS  Google Scholar 

  • Rismani-Yazdi H, Christy AD, Dehority BA, Morrison M, Yu Z, Tuovinen OH (2007) Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol Bioeng 97(6):1398–1407

    Article  CAS  Google Scholar 

  • Rodrigo MA, Cañizares P, Lobato J, Paz R, Sáez C, Linares JJ (2007) Production of electricity from the treatment of urban wastewater using a microbial fuel cell. J Power Sources 169:198–204

    Article  CAS  Google Scholar 

  • Ramasamy, EV, Gajalakshmi S, Sanjeevi R, Jithesh MN, Abbasi SA (2004) Feasibility studies on the treatment of dairy wastewaters with upflow anaerobic sludge blanket reactors. Bioresour. Technol. 93, 209–212.

    Article  CAS  Google Scholar 

  • Scott K, Murano C (2007) A study of a microbial fuel cell battery using manure sludge waste. J Chem Technol Biotechnol 82:809–817

    Article  CAS  Google Scholar 

  • Shizas I, Bagley DM (2004) Experimental determination of energy content of unknown organics in municipal wastewater streams. J Energy Eng 130:45–53

    Article  Google Scholar 

  • Strünkmann GW, Müller JA, Albert F, Schwedes J (2006) Reduction of excess sludge production using mechanical disintegration devices. Water Sci Technol 54(5):69–76

    Article  Google Scholar 

  • Suzuki K, Tanaka Y, Osada T, Waki M (2002) Removal of phosphate, magnesium and calcium from swine wastewater through crystallization enhanced by aeration. Water Res 36:2991–2998

    Article  CAS  Google Scholar 

  • Tender L, Gray S, Groveman E, Lowry D, Kauffman P (2008) The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy. J Power Sources 179:571–575

    Article  CAS  Google Scholar 

  • Tremouli A, Antonopoulou G, Bebelis S, Lyberatos G (2013) Operation and characterization of a microbial fuel cell fed with pretreated cheese whey at different organic loads. Bioresour Technol 131:380–389

    Article  CAS  Google Scholar 

  • Wang X, Feng YJ, Lee H (2008) Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Sci Technol 57(7):1117–1121

    Article  CAS  Google Scholar 

  • Wei Y, Van Houten RT, Borger AR, Eikelboom DH, Fan Y (2003) Minimization of excess sludge production for biological wastewater treatment. Water Res 37(18):4453–4467

    Article  CAS  Google Scholar 

  • Wen Q, Wu Y, Cao D, Zhao L, Sun Q (2009) Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater. Bioresour Technol 100(18):4171–4175

    Article  CAS  Google Scholar 

  • Wilderer PA, Schreff D (2000) Decentralized and centralized wastewater management: a challenge for technology developers. Water Sci Technol 41(1):1–8

    Article  Google Scholar 

  • Yan S, Chen X, Wu J, Wang P (2012) Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk. Appl Microbiol Biotechnol 94(3):829–838

    Article  CAS  Google Scholar 

  • Yang Y, Liu T, Liao Q, Ye D, Zhu X, Li J, Li Y (2016) A three-dimensional nitrogen-doped graphene aerogel-activated carbon composite catalyst that enables low-cost microfluidic microbial fuel cells with superior performance. J Mater Chem A 4(41):15913–15919

    Article  CAS  Google Scholar 

  • Yokoyama H, Ohmori H, Ishida M, Waki M, Tanaka Y (2006) Treatment of cow-waste slurry by a microbial fuel cell and the properties of the treated slurry as a liquid manure. Anim Sci J 77(6):634–638

    Article  CAS  Google Scholar 

  • Zahn JA, Hatfield JL, Do YS, DiSpirito AA, Laird DA, Pfeiffer RL (1997) Characterization of volatile organic emissions and wastes from a swine production facility. J Environ Qual 26:1687–1696

    Article  CAS  Google Scholar 

  • Zang GL, Sheng GP, Tong ZH, Liu XW, Teng SX, Li WW, Yu HQ (2010) Direct electricity recovery from Canna indica by an air-cathode microbial fuel cell inoculated with rumen microorganisms. Environ Sci Technol 44(7):2715–2720

    Article  CAS  Google Scholar 

  • Zhang F, He Z (2013) A cooperative microbial fuel cell system for waste treatment and energy recovery. Environ Technol 34(13–14):1905–1913

    Article  CAS  Google Scholar 

  • Zhang G, Zhao Q, Jiao Y, Wang K, Lee DJ, Ren N (2012) Efficient electricity generation from sewage sludge using biocathode microbial fuel cell. Water Res 46(1):43–52

    Article  CAS  Google Scholar 

  • Zupancic GD, Ros M (2003) Heat and energy requirements in thermophilic anaerobic sludge digestion. Renew Energy 28:2255–2267

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jothinathan, D., Nasrin Fathima, A.H., Mylsamy, P., Bruno, L.B., Sivasankar, V. (2018). Microbial Fuel Cell Research Using Animal Waste: A Feebly-Explored Area to Others. In: Sivasankar, V., Mylsamy, P., Omine, K. (eds) Microbial Fuel Cell Technology for Bioelectricity. Springer, Cham. https://doi.org/10.1007/978-3-319-92904-0_8

Download citation

Publish with us

Policies and ethics