Skip to main content

Biologically Renewable Resources of Energy: Potentials, Progress and Barriers

  • Chapter
  • First Online:
  • 1338 Accesses

Abstract

Concern about the climate change coupled with the increasing demand for fossil fuels makes us think and concentrate about the alternative energy resources which are renewable and clean. Biological resources for energy, also called biomass, include a range of materials originating from living matter. Biological resources were the first source of energy and materials used by man and remained the main one until the expansion of fossil fuels in the mid-nineteenth century. During 1970's, the increase in the petroleum price sparked a renewed interest in biomass as an alternative energy source possible, and several research and demonstration programmes commenced worldwide (Klass 1998) Biomass for renewable energy, fuels and chemicals, Academic Press, San Diego). Biomass has been widely recognized as an important energy source with high potential to reduce greenhouse gas emissions while minimizing environmental pollution. The most commonly used biofuels are bioethanol and biodiesel, which are normally produced using various methods (Zhu et al Sci Total Environ 408:914–21, 2010). Further, these biofuels serve as an important fuel substitute resulting in low harmful emissions (Huang et al. Appl Energy 87:38–46, 2010). Presently, biomass is being focussed as a high-potential renewable resource. Security and access to reliable, affordable, sustainable and modern sources of energy are the key concerns driving renewable energy deployment. This chapter focusses on the possibility, potential and barriers of utilizing biological energy resources in particular.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams JM, Toop TA, Gallagher JM, Donnison IS (2011) Seasonal variation in Laminaria digitata and its impact on the biochemical conversion routes to biofuels. Bioresour Technol 102:9976–9984

    Article  CAS  Google Scholar 

  • Aguilar-Reynosa A, Romaní A, Rodríguez-Jasso RM, Aguilar CN, Garrote G, Ruiz HA (2017) Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production. Bioresour Technol 243:273–283

    Article  CAS  Google Scholar 

  • Akhtar N, Gupta K, Goyal D, Goyal A (2015) Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. AICHE J 35:489–511

    Google Scholar 

  • Alvira P, Toma’s-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    Article  CAS  Google Scholar 

  • Ashokkumar V, Agila E, Sivakumar P, Salam Z, Rengasamy R, Ani FN (2014) Optimization and characterization of biodiesel production from microalgae Botryococcus grown at semi-continuous system. Energy Convers Manag 88:936–946

    Article  CAS  Google Scholar 

  • Bahng M, Mukarakate C, Robichaud D, Nimlos MR (2009) Current technologies for analysis of biomass thermochemical processing: a review. Anal Chim Acta 651:117–138

    Article  CAS  Google Scholar 

  • Balat M, Balat H, O z C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34(5):551–573

    Article  CAS  Google Scholar 

  • Barbir F, Veziroglu TN, Plass HJ (1990) Environmental damage due to fossil fuels use. Int J Hydrog Energy 10:739

    Article  Google Scholar 

  • Bauer A, Bösch P, Friedl A, Amon T (2009) Analysis of methane potentials of steam-exploded wheat straw and estimation of energy yields of combined ethanol and methane production. J Biotechnol 142:50–55

    Article  CAS  Google Scholar 

  • Binod P, Pandey A (2016) Introduction. In: Pandey A, Negi S, Binod P, Larroche C (eds) Pretreatment of biomass, processes and technologies. Elsevier, Amsterdam, p 3

    Google Scholar 

  • Blanco López MC, Blanco CG, Martínez-Alonso A, Tascón JMD (2002) Composition of gases released during olive stones pyrolysis. J Anal Appl Pyrolysis 65(2):313–322

    Article  Google Scholar 

  • Borlido L, Azevedo AM, Roque ACA, Aires-Barros MR (2013) Magnetic separations in biotechnology. Biotechnol Adv 31(8):1374–1385

    Article  CAS  Google Scholar 

  • BP (2003) BP statistical review of world energy. BP plc. p 40

    Google Scholar 

  • BP (2017) https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577

    Article  CAS  Google Scholar 

  • Brethauer S, Studer MH (2015) Biochemical conversion processes of lignocellulosic biomass to fuels and chemicals – a review. Chimia 69:572–581

    Article  CAS  Google Scholar 

  • Brown D, Shi J, Li Y (2012) Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresour Technol 124:379–386

    Article  CAS  Google Scholar 

  • Cai J, He Y, Yu X, Banks SW, Yang Y, Zhang X, Yu Y, Liu R, Bridgwater AV (2017) Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew Sust Energ Rev 76:309–322

    Article  CAS  Google Scholar 

  • Caldeira-pires A, da Luz SM, Palma-Rojas S, Rodrigues TO, Silverio VC, Vilela F, Barbosa PC, Alves AM (2013) Sustainability of the biorefinery industry for fuel production. Energies 6:329–350

    Article  CAS  Google Scholar 

  • Cherubini F (2010a) GHG balances of bioenergy systems – overview of key steps in the production chain and methodological concerns. Renew Energy 35:1565–1573

    Article  CAS  Google Scholar 

  • Cherubini F (2010b) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  • Conesa JA, Font R, Fullana A (2009) Comparison between emissions from the pyrolysis and combustion of different wastes. J Anal Appl Pyrolysis 84(1):95–102

    Article  CAS  Google Scholar 

  • Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, Ornelas-Soto N, Romero-Ogawa MA, Parra-Saldivar R (2015) Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb Biotechnol 8(2):190–209

    Article  CAS  Google Scholar 

  • Daroch M, Geng S, Wang G (2013) Recent advances in liquid biofuel production from algal feedstocks. Appl Energy 102:1371–1381

    Article  Google Scholar 

  • Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26:13–28

    Article  CAS  Google Scholar 

  • de Alva MS, Luna-Pabello VM, Cadena E, Ortíz E (2013) Green microalga Scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production. Bioresour Technol 146:744–748

    Article  Google Scholar 

  • Demiral I, Şensöz S (2008) The effects of different catalysts on the pyrolysis of industrial wastes (olive and hazelnut bagasse). Bioresour Technol 99(17):8002–8007

    Article  CAS  Google Scholar 

  • Demirbas A (2009) Political, economic and environmental impacts of biofuels: a review. Appl Energy 86:S108–S117

    Article  CAS  Google Scholar 

  • Demirdas A (ed) (2010) Biorefineries-for biomass upgrading facilities. Green energy and Technology series. Springer Publications. New York, p 240

    Google Scholar 

  • Faried M, Samer M, Abdelsalam E, Yousef RS, Attia YA, Ali AS (2017) Biodiesel production from microalgae: processes, technologies and recent advancements. Renew Sust Energ Rev 79:893–913

    Article  Google Scholar 

  • Feng Y, Li C, Zhang D (2011) Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol 102(1):101–105

    Article  CAS  Google Scholar 

  • Gnansounou E, Dauriat A, Villegas J, Panichelli L (2009) Life cycle assessment of biofuels: energy and greenhouse gas balances. Bioresour Technol 100:4919–4930

    Article  CAS  Google Scholar 

  • Grima EM, Belarhi EH, Fernandez FA, Medina AR, Ahisti Y (2003) Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnol Adv. 20(7):491–515

    Article  Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45(2):160–186

    Article  CAS  Google Scholar 

  • Halim R, Gladman B, Danquah MK, Webley PA (2011) Oil extraction from microalgae for biodiesel production. Bioresour Technol 102(1):178–185

    Article  CAS  Google Scholar 

  • Harris F (ed) (2014) Global environmental issues. Wiley and sons. UK

    Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14(3):1037–1047

    Article  CAS  Google Scholar 

  • Hjorth M, Gränitz K, Adamsen APS, Moller HB (2011) Extrusion as a pretreatment to increase biogas production. Bioresour Technol 102:4989–4994

    Article  CAS  Google Scholar 

  • Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sust Energ Rev 16(1):143–169

    Article  CAS  Google Scholar 

  • Hu YR, Wang F, Wang SK, Liu CZ, Guo C (2013) Efficient harvesting of marine microalgae Nannochloropsis maritima using magnetic nanoparticles. Bioresour Technol 138:387–390

    Article  CAS  Google Scholar 

  • Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    Article  CAS  Google Scholar 

  • Hubbert MK (1956) Nuclear energy and fossil fuel. Spring Meeting of the Southern District, American Petroleum Institute, San Antonio, TX, March 7–9, Publication No. 95, Shell Development Co

    Google Scholar 

  • Jha P, Schmidt S (2017) Reappraisal of chemical interference in anaerobic digestion processes. Renew Sust Energ Rev 75:954–971

    Article  Google Scholar 

  • Jung YH, Kim KH (2015) Acidic pretreatment. In: Pandey A, Negi S, Binod P, Larroche C (eds) Pretreatment of biomass, Processes and Technologies. Elsevier, Amsterdam, p 27

    Chapter  Google Scholar 

  • Kabir MM, Forgacs G, Horvath S (2015) Biogas from lignocellulosic materials. In: Karimi K (ed) Lignocellulose-Based Bioproducts. Springer, Cham, p 207

    Google Scholar 

  • Kapoor M, Soam S, Agrawal R, Gupta RP, Tuli DK, Kumar R (2017) Pilot scale dilute acid pretreatment of rice straw and fermentable sugar recovery at high solid loadings. Bioresour Technol 224:688–693

    Article  CAS  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375

    Article  Google Scholar 

  • Klass D (1998) Biomass for renewable energy, fuels and chemicals. Academic Press, San Diego

    Google Scholar 

  • Knothe G (2006) Analyzing biodiesel: standards and other methods. J Am Oil Chem Soc 83(10):823–833

    Article  CAS  Google Scholar 

  • Knuckey RM, Brown MR, Robert R, Frampton DM (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquac Eng 35(3):300–313

    Article  Google Scholar 

  • Kong Q, Chen P, Ruan R (2007) High oil content microalgae selection for biodiesel production. In: 2007 ASAE annual meeting. American Society of Agricultural and Biological Engineers, p 1

    Google Scholar 

  • Kreith F, Krumdieck S (2013) Principles of sustainable energy systems. CRC Press. Taylor and Francis group. London

    Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30(3):673–690

    Article  CAS  Google Scholar 

  • Lapola D, Schaldach R, Alcamo J, Bondeau A, Koch J, Koelking C, Priess J (2010) Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc Natl Acad Sci 8:3388–3393

    Article  Google Scholar 

  • Lettinga G (2005) The anaerobic treatment approach towards a more sustainable and robust environmental protection. Water Sci Technol 52:1–11

    Article  CAS  Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185

    Article  CAS  Google Scholar 

  • Li P, Cai D, Luo Z, Qin P, Chen C, Wang Y, Zhang C, Wang Z, Tan T (2016) Effect of acid pretreatment on different parts of the corn stalk for second generation ethanol production. Bioresour Technol 206:86–92

    Article  CAS  Google Scholar 

  • Mallick N, Bagchi SK, Koley S, Singh AK (2016) Progress and challenges in microalgal biodiesel production. Front Microbiol 7:1019

    Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232

    Article  CAS  Google Scholar 

  • Moodley P, Gueguim Kana EB (2015) Optimization of xylose and glucose production from sugarcane leaves (Saccharum officinarum) using hybrid pretreatment techniques and assessment for hydrogen generation at semi-pilot scale. Int J Hydrog Energy 40:3859–3867

    Article  CAS  Google Scholar 

  • Moodley P, Gueguim Kana EB (2017a) Microwave-assisted inorganic salt pretreatment of sugarcane leaf waste: effect on physiochemical structure and enzymatic structure. Bioresour Technol 235:35–42

    Article  CAS  Google Scholar 

  • Moodley P, Gueguim Kana EB (2017b) Comparison of a two-stage and a combined single stage salt-acid based lignocellulosic pretreatment for enhancing enzymatic hydrolysis. Ind Crop Prod 108:219–224

    Article  CAS  Google Scholar 

  • Moodley P, Gueguim Kana EB (2017c) Development of a steam or microwave-assisted sequential salt-alkali pretreatment for lignocellulosic waste: effect on delignification and enzymatic hydrolysis. Energy Convers Manag 148:801–808

    Article  CAS  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578–597

    Article  CAS  Google Scholar 

  • Paz AM (2013) Biological resources for energy. In: Earth Systems and Environmental Sciences. https://doi.org/10.1016/B978-0-12-409548-9.05881-4

    Chapter  Google Scholar 

  • Petford N (2004) Meeting society’s demand for energy. In: Harries F (ed) Global environmental issues. John Wiley and sons ltd. USA

    Google Scholar 

  • Reddy DHK, Lee SM (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Colloid Interf Sci 201:68–93

    Article  Google Scholar 

  • RFA (2016) Industry Statistics, Renewable Fuels Association, Washington, DC

    Google Scholar 

  • RFA (2017) Industry Statistics, Renewable Fuels Association, Washington, DC

    Google Scholar 

  • Richmond A (ed) (2008) Handbook of microalgal culture: biotechnology and applied phycology. John Wiley & Sons. UK

    Google Scholar 

  • Robles-Heredia JC, Sacramento-Rivero JC, Canedo-López Y, Ruiz-Marín A, Vilchiz-Bravo LE (2015) A multistage gradual nitrogen reduction strategy for increased lipid productivity and nitrogen removal in wastewater using Chlorella vulgaris and Scenedesmus obliquus. Braz J Chem Eng 32(2):335–345

    Article  CAS  Google Scholar 

  • Rorke DCS, Gueguim Kana EB (2016) Biohydrogen process development on waste sorghum (Sorghum bicolor) leaves: optimization of saccharification, hydrogen production and preliminary scale up. Int J Hydrog Energy 41(30):12941–12952

    Article  CAS  Google Scholar 

  • Rorke DCS, Gueguim Kana EB (2017) Kinetics of bioethanol production from waste sorghum leaves using Saccharomyces cerevisiae BY4743. Fermentation 3:19

    Article  Google Scholar 

  • Saini JK, Saini R, Tewari L (2014) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 2014:1–17

    Google Scholar 

  • Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  Google Scholar 

  • Seppälä M, Paavola T, Rintala J (2007) Methane yields of different grass species on the second and third harvest in boreal conditions. In: 11th IWA world congress on anaerobic digestion, Brisbane, pp 23–27

    Google Scholar 

  • Sewsynker-Sukai Y, Gueguim Kana EB (2017) Optimization of a novel sequential alkalic and metal salt pretreatment for enhanced delignification and enzymatic saccharification of corn cobs. Bioresour Technol 243:785–792

    Article  CAS  Google Scholar 

  • Shockey I, Kinicki R, Delorey J, Arruda K, Baldwin S, Quinn A (2010) Feasibility study of alternative energy sources and conservation techniques for implementation in El Yunque National Forest. Available at http://web.cs.wpi.edu/~rek/Projects/USF_Proposal. Accessed 2 Dec 2015

  • Sindhu R, Pandey A, Binod P (2015) Alkaline pretreatment. In: Pandey A, Negi S, Binod P, Larroche C (eds) Pretreatment of biomass, Processes and Technologies. Elsevier, Amsterdam, p 51

    Chapter  Google Scholar 

  • Sindhu R, Binod P, Pandey A (2016) A novel sono-assisted acid pretreatment of chilli post-harvest residue for bioethanol production. Bioresour Technol 213:58–63

    Article  CAS  Google Scholar 

  • Skiba EA, Baibakova OV, Budaeva VV, Pavlov IN, Vasilishin MS, Makarova EI, Sakovich GV, Ovchinnikova EV, Banzaraktsaeva SP, Vernikovskaya NV, Chumachenko VA (2017) Pilot technology of ethanol production from oat hulls for subsequent conversion to ethylene. Chem Eng J 329:178. https://doi.org/10.1016/j.cej.2017.05.182

    Article  CAS  Google Scholar 

  • Smithers J (2014) Review of sugarcane trash recovery systems for energy cogeneration in South Africa. Renew Sust Energ Rev 32:915–925

    Article  Google Scholar 

  • Sobczuk TM, Chisti Y (2010) Potential fuel oils from the microalga Choricystis minor. J Chem Technol Biotechnol 85(1):100–108

    Article  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  CAS  Google Scholar 

  • Tauseef SM, Premalatha M, Abbasi T, Abbasi SA (2013) Methane capture from livestock manure. J Environ Manag 117:187–207

    Article  CAS  Google Scholar 

  • Twidell J, Tonyweir (eds) (2006) Renewable energy resources, 2nd edn. Taylor and Francis. USA

    Google Scholar 

  • Vandamme D, Pontes SCV, Goiris K, Foubert I, Pinoy LJJ, Muylaert K (2011) Evaluation of electro-coagulation–flocculation for harvesting marine and freshwater microalgae. Biotechnol Bioeng 108(10):2320–2329

    Article  CAS  Google Scholar 

  • Viikari L, Vehmaanpera J, Koivula A (2012) Lignocellulosic ethanol: from science to industry. Biomass Bioenergy 46:13–24

    Article  CAS  Google Scholar 

  • Wang M, Liu K, Dai L, Zhang J, Fang X (2013) The structural and biochemical basis for cellulose biodegradation. J Chem Technol Biotechnol 88:491–500

    Article  CAS  Google Scholar 

  • Wang K, Chen J, Sun S-N, Sun RC (2015) Steam explosion. In: Pandey A, Negi S, Binod P, Larroche C (eds) Pretreatment of biomass, Processes and Technologies. Elsevier, Amsterdam, p 75

    Chapter  Google Scholar 

  • Wei N, Quarterman J, Jin Y (2013) Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol 31:70–77

    Article  CAS  Google Scholar 

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860

    Article  CAS  Google Scholar 

  • Woodward J, Place C, Arbeit K (2000) Energy resources and the environment. In: Ernst WG (ed) Earth Systems: Processes and Issues. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • www. 〈http://ethanolrfa.org/resources/industry/statistics/#1454099788442-e48b2782-ea53〉; 2016

  • Xiao Y, Zhand J, Cui J, Cui Q (2015) Simultaneous accumulation of neutral lipids and biomass in Nannochloropsis oceanica IMET1 under high light intensity and nitrogen replete conditions. Algal Res 11:55–62

    Article  Google Scholar 

  • Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101(14):5494–5500

    Article  CAS  Google Scholar 

  • Xu J (2015) Microwave pretreatment. In: Pandey A, Negi S, Binod P, Larroche C (eds) Pretreatment of biomass, processes and technologies. Elsevier, Amsterdam, p 157

    Chapter  Google Scholar 

  • Xu L, Guo C, Wang F, Zheng S, Liu CZ (2011) A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresour Technol 102(21):10047–10051

    Article  CAS  Google Scholar 

  • Yadav D, Barbora L, Bora D, Mitra S, Rangan L, Mahanta P (2017) An assessment of duckweed as a potential lignocellulosic feedstock for biogas production. Int Biodeterior Biodegrad 119:253–259

    Article  CAS  Google Scholar 

  • Yavuz CT, Prakash A, Mayo JT, Colvin VL (2009) Magnetic separations: from steel plants to biotechnology. Chem Eng Sci 64(10):2510–2521

    Article  CAS  Google Scholar 

  • Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sust Energ Rev 66:751–774

    Article  CAS  Google Scholar 

  • Zhao X, Moates GK, Elliston A, Wilson DR, Coleman MJ, Waldron KW (2015) Simultaneous saccharification and fermentation of steam exploded duckweed: improvement of the ethanol yield by increasing yeast titre. Bioresour Technol 194(2015):263–269

    Article  CAS  Google Scholar 

  • Zhu L, Cheung CS, Zhang WG, Huang Z (2010) Emissions characteristics of a diesel engine operating on biodiesel and biodiesel blended with ethanol and methanol. Sci Total Environ 408:914–921

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors from Bharathidasan University acknowledge the UGC-NON SAP, DST-FIST and UGC SAP for providing the necessary facilities in the department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasanthy Muthunarayanan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muthunarayanan, V. et al. (2018). Biologically Renewable Resources of Energy: Potentials, Progress and Barriers. In: Sivasankar, V., Mylsamy, P., Omine, K. (eds) Microbial Fuel Cell Technology for Bioelectricity. Springer, Cham. https://doi.org/10.1007/978-3-319-92904-0_1

Download citation

Publish with us

Policies and ethics