Skip to main content

Assessment of Warming Projections and Probabilities for Brazil

  • Chapter
  • First Online:
Climate Change Risks in Brazil

Abstract

This chapter considers four emission scenarios of CMIP5 simulations to analyze how greenhouse gases could evolve this century and to evaluate probabilities of additional warming to Brazil based on climate projections. The results are shown in values for average temperature and anomalies close to the surface. Thus, the probabilities for a range of different warming levels were obtained exceeding by 4 °C to 7 °C for RCP 8.5. In this scenario, Brazil shows a 100% probability of suffering temperature rises of over 4 °C before the end of this century. For more extreme warming as 7 °C, the probability is of 80% by 2200. The Brazil analysis serves two purposes: a) plausible adaptation strategies require local risk knowledge; and b) the focus on higher warming temperature changes is crucial for a cost-benefit analysis of mitigation policies to reduce the risks of impacts and damages caused by extreme regional climate change. Apparently small changes in the climate may have significant effects, especially if important thresholds are surpassed. Crops have little tolerance to high temperatures, and as the climate gets warmer, these limits may be exceeded more and more often. This is one of the reasons why temperatures rise of 4 °C or more might represent severe risks for global food safety and affect food-producing countries like Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brierley, A. S., & Kingsford, M. J. (2009). Impacts of climate change on marine organisms and ecosystems. Current Biology, 19, 602–614.

    Article  Google Scholar 

  • Burke, M., Dykema, J., Lobell, D. B., Miguel, E., & Satyanath, S. (2015). Incorporating climate uncertainty into estimates of climate change impacts. Review of Economics and Statistics, 97(2), 461–471.

    Article  Google Scholar 

  • Burkett, V. R., et al. (2014). Point of departure. In Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the Fifth assessment report of the IPCC (pp. 169–194). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Clarke, L., Edmonds, J., Jacoby, H., Pitcher, H., Reilly, J., & Richels, R. (2007). Scenarios of greenhouse gas emissions and atmospheric concentrations. US Department of Energy Publications, 6.

    Google Scholar 

  • Fujino, J., Nair, R., Kainuma, M., Masui, T., & Matsuoka, Y. (2006). Multi-gas mitigation analysis on stabilization scenarios using AIM global model. The Energy Journal, 343–353.

    Google Scholar 

  • Fung, F., Lopez, A., & New, M. (2011). Water availability in+ 2°C and +4°C worlds. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 369(1934), 99–116.

    Article  Google Scholar 

  • Fuss, S. (2017). The 1.5°C target, Political implications, and the role of BECCS. Oxford University Press, http://climatescience.oxfordre.com/view/10.1093/acrefore/9780190228620.001.0001/acrefore-9780190228620-e-585 (Accessed March 16, 2017). https://doi.org/10.1093/acrefore/9780190228620.013.585.

    Book  Google Scholar 

  • Gemenne, F. (2011). Climate-induced population displacements in a 4 C+ world. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 369(1934), 182–195.

    Article  Google Scholar 

  • Good, P., et al. (2012). A step-response approach for predicting and understanding non-linear precipitation changes. Climate Dynamics, 39, 2789–2803.

    Article  Google Scholar 

  • Good, P., et al. (2016). Large differences in regional precipitation change between a first and second 2 K of global warming. Nature Communications, 7, 13667.

    Article  Google Scholar 

  • Hewitson, B., et al. (2014). Regional context. In Climate change 2014: Impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of working group II to the Fifth assessment report of the IPCC (pp. 1133–1197). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Hijioka, Y., Matsuoka, Y., Nishimoto, H., Masui, M., & Kainuma, M. (2008). Global GHG emissions scenarios under GHG concentration stabilization targets. Journal of Global Environmental Engineering, 13, 97–108.

    Google Scholar 

  • Horton, B. P., Rahmstorf, S., Engelhart, S. E., & Kemp, A. C. (2014). Expert assessment of sea-level rise by AD 2100 and AD 2300. Quaternary Science Reviews, 84, 1–6.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change-IPCC. (2014). Summary for policymakers. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change (pp. 1–32). Cambridge, UK and New York: Cambridge University Press.

    Google Scholar 

  • Jones, R. G., Noguer, M., Hassell, D. C., Hudson, D., Wilson, S. S., Jenkins, G. J., et al. (2004). Generating high resolution climate change scenarios using PRECIS (p. 35). Exeter, UK: Met Office Hadley Centre.

    Google Scholar 

  • KNMI-Climate Explorer. Website - http://climexp.knmi.nl/. (Access, 10 Jan 2017).

  • Kreft, S., Eckstein D., & Melchior, I. (2016). Global climate risk index 2017. ISBN 978-3-943704-49-5, 32p. Purchase order number: 17-2-01e. Germanwatch e.V.

    Google Scholar 

  • Lee, Y. H., Pierce, J. R., & Adams, P. J. (2013). Representation of nucleation mode microphysics in global aerosol microphysics models.Geoscientific. Model Development Discussions, 6(1), 893–924. https://doi.org/10.5194/gmd-6-1221-2013

    Article  Google Scholar 

  • Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A., González Rouco, J. F., et al. (2013). Information from paleoclimate archives. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of Working group I to the Fifth assessment report of the intergovernmental panel on climate change (pp. 383–464). Cambridge, UK and New York: Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.013

    Chapter  Google Scholar 

  • Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J. F., et al. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic change, 109(1–2), 213–241.

    Article  Google Scholar 

  • Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., et al. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756.

    Article  Google Scholar 

  • Nakicenovic, N. & Swart, R. (2000). Special report on emissions scenarios. In N. Nakicenovic & R. Swart (Eds.), Special Report on Emissions Scenarios (p. 612. ISBN 0521804930). Cambridge, UK: Cambridge University Press v1. July 2000.

    Google Scholar 

  • Nazarenko, L., Schmidt, G. A., Miller, R. L., Tausnev, N., Kelley, M., Ruedy, R., et al. (2012). Regional climate downscaling: What’s the point? Eos, 93(5), 52–53.

    Article  Google Scholar 

  • Pielke Sr., R. A., & Wilby, R. L. (2012). Regional climate downscaling: What's the point? Eos. Trans. AGU, 93(5), 52.

    Article  Google Scholar 

  • Piontek, F., Müller, C., Pugh, T. A., Clark, D. B., Deryng, D., Elliott, J., et al. (2014). Multisectoral climate impact hotspots in a warming world. Proceedings of the National Academy of Sciences, 111(9), 3233–3238.

    Article  Google Scholar 

  • Rahmstorf, S. (2007). A semi-empirical approach to projecting future sea-level rise. Science, 315, 368–370.

    Article  Google Scholar 

  • Randall, D. A., et al. (2007). Climate models and their evaluation. In Climate change 2007: The physical science basis. Contribution of working group I to the Fourth assessment report of the IPCC. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Riahi, K., Grübler, A., & Nakicenovic, N. (2007). Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change, 74(7), 887–935.

    Article  Google Scholar 

  • Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V., et al. (2015). Energy system transformations for limiting end-of-century warming to below 1.5 [deg] C. Nature Climate Change, 5(6), 519–527.

    Article  Google Scholar 

  • Romanou, M. S., Shindell, D. T., Sun, S., Tsigaridis, K., Unger, N., Voulgarakis, A., et al. (2015). Future climate change under RCP emission scenarios with GISS ModelE2. Journal of Advances in Modeling Earth Systems, 7(1), 244–267. https://doi.org/10.1002/2014MS000403

    Article  Google Scholar 

  • Schaeffer, M., Hare, W., Rahmstorf, S., & Vermeer, M. (2012). Long-term sea-level rise implied by 1.5°C and 2°C warming levels. Nature Climate Change, 2(12), 867–870.

    Article  Google Scholar 

  • Sherwood, S. C., & Huber, M. (2010). An adaptability limit to climate change due to heat stress. Proceedings of the National Academy of Sciences, 107(21), 9552–9555.

    Article  Google Scholar 

  • Smith, S. J., & Wigley, T. M. L. (2006). Multi-gas forcing stabilization with minicam. The Energy Journal, 27, 373–391.

    Google Scholar 

  • Stanton, J. C., Shoemaker, K. T., Pearson, R. G., & Akçakaya, H. R. (2015). Warning times for species extinctions due to climate change. Global Change Biology, 21(3), 1066–1077.

    Article  Google Scholar 

  • Strauss, B. H., Kulp, S., & Levermann, A. (2015). Mapping choices: Carbon, climate, and rising seas — Our global legacy. Princeton, NJ: Climate Central.

    Google Scholar 

  • Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498.

    Article  Google Scholar 

  • Thomas, M. A. & Lin, T. (2015). Addressing uncertainty in ensemble sea-level rise predictions 12th. International conference on applications of statistics and probability in civil engineering, ICASP12 Vancouver, Canada, July 12–15, 2015.

    Google Scholar 

  • Van Vuuren, D., den Elzen, M., Lucas, P., Eickhout, B., Strengers, B., van Ruijven, B., et al. (2007). Stabilizing greenhouse gas concentrations at low levels: An assessment of reduction strategies and costs. Climatic change. https://doi.org/10.1007/s/10584-006-9172-9

  • Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., et al. (2011). The representative concentration pathways: An overview. Climatic Change, 109(1–2), 5.

    Article  Google Scholar 

  • Wise, M., Calvin, K., Thomson, A., Clarke, L., Bond-Lamberty, B., Sands, R., et al. (2009). Implications of limiting CO2 concentrations for land use and energy. Science, 324(5931), 1183–1186.

    Article  Google Scholar 

  • World Bank. (2012). 4°C: Turn Down the Heat. A Report for the World Bank by the Potsdam Institute for Climate Impact Research and Climate Analytics, November 2012, Washington, DC 20433.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wagner R. Soares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soares, W.R., Marengo, J.A., Nobre, C.A. (2019). Assessment of Warming Projections and Probabilities for Brazil. In: Nobre, C., Marengo, J., Soares, W. (eds) Climate Change Risks in Brazil. Springer, Cham. https://doi.org/10.1007/978-3-319-92881-4_2

Download citation

Publish with us

Policies and ethics