Skip to main content

Volcanic Activity and Processes

  • Chapter
  • First Online:
  • 682 Accesses

Part of the book series: GeoGuide ((GEO))

Abstract

The “reading” of an area by geologists inevitably leads to the nature of the physical processes that shaped it. It is in the variety of the landscape of Campania that one can recognize the various geological phenomena that have been operating for millions of years in this area, located on the eastern edge of the Tyrrhenian Basin and bordered by the limestone massifs of the Southern Apennines (Fig. 2.1). The two main geodynamic processes that characterize the Miocene, from 23 to 5.3 million years ago (mya), not only this area but throughout most of southern Italy, are the distension of the Tyrrhenian basin and the Apennine orogenesis (Fig. 2.2). These two processes are related to the counterclockwise rotation of the African plate to the south, converging on the Euroasian plate to the north. The border between the two plates is delimited by the Apennine chain, in the centre-south of Italy and, to the north, by the Alps, representing the zones of collision and corrugation due to convergence. The relative motion between the two plates has produced, since at least since the lower Pleistocene (between 2.5 mya and 11,700 years ago), predominantly extensional tectonic activity on the Tyrrhenian side, which becomes compressive as one moves across to the Adriatic. The Apennine is a watershed between these two different tectonic areas. The Apennine Rocks, which are Mesozoic-Tertiary in age, represent the ancient carbonate basement, formed in a shallow marine environment, and subsequently deformed by tectonic processes. Crustal relaxation on the Tyrrhenian margin during the Pleistocene is associated with a tectonic movement that incorporates a strongly vertical component, which caused the carbonate platform to sink as much as several thousand metres in the direction of the Tyrrhenian Sea. This resulted in the formation of horst and graben structures, which correspond to zones of upland topography and subsidence respectively. Within the setting of structures linked to the Tyrrenean distension system lies the Campania Plain which represents a graben, stretched in a northwesterly-southeasterly direction and filled by volcanoclastic deposits and alluvial sediments, the latter resulting from the collapse of the Apennines, for a total thickness of more than 3000 m in the area of ​​maximum subsidence. The plain itself develops between Monte Massico to the northwest, the Campanian Apennines (the Tifatini mountains of the area around Nola and Caserta) to the east and the Lattari Mountains of the Sorrento peninsula to the southeast. Monte Massico borders to the northwest with the extinct volcano of Roccamonfina, the last eruptive activity of which dates back to about 50,000 years ago (Fig. 1.3). In the central and southern part of the plain emerge the volcanic complexes of the Campi Flegrei and Vesuvius, which together with the island of Ischia, just to the west, constitute the active volcanoes of Campania. The tectonic distension of this area, ongoing over the course of several million years, has produced a progressive stretching and thinning of the crust, with the rise of the Moho which represents the rheological discontinuity between the lower crust and the upper mantle. This process has allowed magmas in the mantle to rise through the crust, halting at a range of depths and thus feeding Neapolitan volcanism (Fig. 2.3).

Digital terrain model of the Campania Region with indication of the main faults (black lines) related to its Pleistocene-Holocene tectonics. The box in the right-top shows the thrust between the African and Eurasian plate that is responsible for the Apennine orogenesis (mountain building) (INGV Archive)

Direction of Tyrrhenian spreading and Apennine tension along the collision zone between the Africa and Eurasian plate

A sketch of the possible crustal structure below the Neapolitan volcanoes reconstructed using the main geological, geophysical and stratigraphic information available. The extensional (spreading) tectonics of the Tyrrhenian basin have produced a thinning of the crust and the uprising of the Moho at a depth of about 20 km beneath the volcanoes. The minimum depth, which corresponds to the maximum stretching of the crust, occurs beneath the Campi Flegrei volcanic district that is also the area with the most intense heat flow. The extension generated intense vertical tectonic activity, with the sinking of the carbonate platform toward the sea. The deep magmatic chambers that fed the larger eruptions of Neapolitan volcanoes are possibly located at a depth of 8–10 km, which may correspond to the level of neutral buoyancy. This deeper feature has not been investigated beneath the Island of Ischia. A robust geothermal system has developed within the highly fractured rocks in the Campi Flegrei and Ischia caldera, respectively. Crystalline basement is composed of metamorphic rocks, while the zone subject to sinking was filled by volcanic and alluvial deposits during the Holocene. Conglomerates and clays may be related to the intense erosional phase and sinking of the carbonate platform in the Early Pleistocene. See also Fig. 32 for Rovigliano rock

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acocella V, Funiciello R (1999) The interaction between regional and local tectonics during resurgent doming: the case of the island of Ischia, Italy. J Volcanol Geotherm Res 88:109–123

    Article  Google Scholar 

  • AGIP (1987) Geologia e geofisica del sistema geotermico dei Campi Flegrei. Technical report. Settore Esplor e Ric Geoterm-Metodol per l’Esplor Geotermica, San Donato Milanese Italy, pp 1–23

    Google Scholar 

  • Amadei B, Stephansson O (1997) Rock stress and its measurement. Chapman and Hall, London

    Book  Google Scholar 

  • Ambrose SH (1998) Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans. J Human Evol 34:623–652

    Article  Google Scholar 

  • Babbage, C (1834) Observations on the Temple of Serapis of Pozzuoli near Naples. Proceedings of Geol. Society, vol. II, London, March 1834. The author published a private edition in 1847, in Quarterly Journal of the Geological Society III; 186–217. London 1847

    Google Scholar 

  • Barberi F, Cassano E, La Torre P, Sbrana A (1991) Structural evolution of Campi Flegrei Caldera in light of volcanological and geophysical data. J. Volcanol. Geotherm. Res. 48(1–2):33–49

    Article  Google Scholar 

  • Barra D, Cinque A, Italiano A, Scorziello R (1993) Il Pleistocene superiore marino di Ischia: paleoecologia e rapporti con l’evoluzione tettonica recente. Studi Geologici Camerti, Special 1992(1):231–243

    Google Scholar 

  • Beardsmore G, Cull JP (2002) Crustal heat flow. Cambridge University Press, A guide to measurement and modelling, p 324

    Google Scholar 

  • Blundy JD, Annen CJ (2016) Crustal magmatic systems from the perspective of heat transfer. Elements 12(2):115–120

    Article  Google Scholar 

  • Brancaccio L, Cinque A, Romano P, Rosskops C, Russo F, Santangelo N, Santo A (1992) Geomorphology and neotectonic evolution of a sector of the Tyrrhenian flank of the Southern Apennines (Region of Naples, Italy). Z. Geomorph. N. F. 82:47–58

    Google Scholar 

  • Branney MJ, Kokelaar P (2003) Pyroclastic density currents and the sedimentation of ignimbrites. Geol Soc Lond Mem 27:1–143

    Google Scholar 

  • Brochhi GB (1814) Conchiologia Fossile Subapennina con Osservazioni Geologiche sugli Apennini e sul Suolo Adiacente. Stamperia Reale, Milano

    Book  Google Scholar 

  • Brocchini D, Principe C, Castradori D, Laurenzi MA, Gorla L (2002) Quaternary evolution of the southern sector of the Campanian Plain and early Somma-Vesuvius activity: insights from the Trecase 1 well. Mineral Petrol 73(1):67–92

    Google Scholar 

  • Bursik MI, Woods AW (1996) The dynamics and thermodynamics of large ash flows. Bull Volcanol 58:175–193

    Article  Google Scholar 

  • Camerota M (2004) Galileo Galilei e la Cultura Scientifica nell’età della Controriforma. Salerno Editrice, Rome

    Google Scholar 

  • Carlino S and Luongo G (2005) Due giorni al Vesuvio. Ed. Parco Nazionale del Vesuvio

    Google Scholar 

  • Carlino S, Somma R (2012) Troise C and De Natale G (2012) The geothermal exploration of Campanian volcanoes: Historical review and future development. Renew Sustain Energy Rev 16(1):1004–1030

    Article  Google Scholar 

  • Carlino S (2012) The process of resurgence for Ischia Island (southern Italy) over the last 55 ka: the laccolith model and implications for eruption forecasting. Bull Volc . https://doi.org/10.1007/s00445-012-0578-0

    Article  Google Scholar 

  • Carlino S, Somma R, Troiano A, Di Giuseppe MG,. Troise C and De Natale G (2014) The geothermal system of Ischia Island (southern Italy): critical review and sustainability analysis of geothermal resource for electricity generation. Renewable Energy, 62 – 177-196

    Article  Google Scholar 

  • Carlino S, Tramelli A, Somma R (2014b) Caldera subsidence in extensional tectonics. Bulletin Volcanolgy. https://doi.org/10.1007/s00445-014-0870-2

    Article  Google Scholar 

  • Carlino S, Somma R, Troiano A, Di Giuseppe MG, Troise C, and De Natale G (2015) Geothermal Investigations of Active Volcanoes: The Example of Ischia Island and Campi Flegrei Caldera (Southern Italy) In: G. Lollino et al. (eds.), Engineering Geology for Society and Territory – Volume 1, https://doi.org/10.1007/978-3-319-09300-0_70, Springer International Publishing Switzerland 2015

    Google Scholar 

  • Carlino S (2015) La storia dei vulcani napoletani e il contributo alla ricerca vulcanologica. Scienze e Ricerche, n.17 15 Novembre

    Google Scholar 

  • Cashman KV, Giordano G (2014) Calderas and magma reservoirs. J Volcanol Geoth Res 288:28–45

    Article  Google Scholar 

  • Chiodini G, Marini L, Russo M (2002) Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano. Italy. Geochimica et Cosmochimica Acta 65(13):2129–2147

    Article  Google Scholar 

  • Chiodini G, Granieri D, Avino R, Caliro S, Costa A, Werner C (2005) Carbon dioxide diffuse degassing: implications on energetic state of a volcanic hydrothermal systems. J Geophys Res 110:B08204

    Article  Google Scholar 

  • Cioni R, Marianelli P, Sbrana A (1992) L’eruzione del 79 d.C: Stratigrafia dei depositi ed impatto sugli insediamenti romani nel settore orientale e meridionale del Somma – Vesuvio. R. St. Pomp., IV, pp. 179–198

    Google Scholar 

  • Courtillot V (1999) Evolutionary catastrophes: the science of mass extinction. Cambridge University Press, New York, pp 1–173

    Google Scholar 

  • Deino AL, Orsi G, de Vita S, Piochi M (2004) The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera, Italy) assessed by 40Ar/39Ar dating method. J Volcanol Geotherm Res 133:157–170

    Article  Google Scholar 

  • De Lorenzo, G., (1904). The Hystory of volcanic action in the Phlegrean Fields. Quart. J. Geol. Soc., 9

    Google Scholar 

  • de Vita S, Sansivero F, Orsi G, Marotta E, Piochi M (2010) Volcanological and structural evolution of the Ischia resurgent caldera (Italy) over the past 10 k.y. The Geological Society of America special paper 464:193–242

    Article  Google Scholar 

  • De Vivo B, Rolandi G, Gans PB, Calvert A, Bohrson WA, Spera FJ, Belkin HE (2001) New constraints on the pyroclastic eruptive history of the Campanian volcanic plain (Italy). Mineral Petrol 73:47–65. https://doi.org/10.1007/s007100170010

    Article  Google Scholar 

  • Doglioni C (1991) A proposal for the kinematic modelling of W-dipping subductions-possible applications to the Tyrrhenian-Apennines system. Terra Nova 3(4):423–434

    Article  Google Scholar 

  • Doglioni C, Harabaglia P, Martinelli G, Mongelli F, Zito G (1996) A geodynamic model of the Southern Apennines accretionary prism. Terra Nova 8:540–547

    Article  Google Scholar 

  • Dvorak JJ, Mastrolorenzo G (1991) The mechanism of recent vertical crustal movements in Campi Flegrei caldera, southern Italy. Geol Soc Am Spec Pap 263:1–48

    Google Scholar 

  • Druitt TH, Mellors RA, Pyle DM, Sparks RSJ (1989) Explosive volcanism on Santorini, Greece. Geol Mag 126:95–126

    Article  Google Scholar 

  • Ferrucci F, Gaudiosi G, Pino NA, Luongo G, Hirn A, Mirabile L (1989) Seismic detection of a major Moho upheaval beneath the Campania volcanic area (Naples, Southern Italy). Geophys Res Lett 16(11):1317–1320

    Article  Google Scholar 

  • Finetti, I., 2005. Crop Project, Deep Seismic Exploration of the Central Mediterranean and Italy. Atlases in geoscience 2. Elsevier, 779 pp

    Google Scholar 

  • Flemming NC (1969) Archaeological evidence for eustatic change of sea level and earth movements in the Western Mediterranean during the last 2000 years. Geological Society of America 109:1–125

    Article  Google Scholar 

  • Forbes JD (1829) Physical notices in the Bay of Naples, no. V, On the Temple of Serapis at Pozzuoli and the phenomena which it exhibits. Edinburgh J. Sci. 1:260–286

    Google Scholar 

  • Fournier, R.O., 2007. Hydrothermal systems and volcano geochemistry. In (Dzurisin, D. Ed.) Volcano Deformation, geodetic monitoring techniques. Springer, 441 pp

    Google Scholar 

  • Fyndlen P (2004) Athanasius Kircher: The Last Man Who Knew Everything. Routledge New York and London

    Google Scholar 

  • Galiani F (1772) Catalogo delle materie appartenenti al Vesuvio contenute nel museo, Londra

    Google Scholar 

  • Galetto F, Acocella V, Caricchi L (2017) Caldera resurgence by magma viscosity contrasts. Nature Communications. https://doi.org/10.1038/s-41467-017-01632-y

    Article  Google Scholar 

  • Global Volcanism Program: https://volcano.si.edu

  • Gottsmann J, Rymer H, Berrino G (2006) Unrest at the Campi Flegrei caldera (Italy): A critical evaluation of source parameters from geodetic data inversion. J Volcanol Geotherm Res 150:132–145

    Article  Google Scholar 

  • Gudmundsson A, Brenner SL (2005) On the conditions of sheet injections and eruptions in stratovolcanoes. Bull Volcanol 67:768–782

    Article  Google Scholar 

  • Johnston Lavis, HJ (1884) The geology of the Mt. Somma and Vesuvius: being a study of volcanology

    Google Scholar 

  • Quarterly journal of the Geological Society of London, 40, 35-149

    Google Scholar 

  • Haimson BC, Rummel F (1982) Hydrofracturing stress measurements in the Iceland Research Drilling Project drill hole at Reydarfjordur, Iceland. J Geophys Res 87:6631–6649

    Article  Google Scholar 

  • Hamilton W (1772) Observations On Mount Vesuvius, Mount Etna, And Other Volcanos: In a Series of Letters. London

    Google Scholar 

  • Hamilton, W. (1776). Campi Flegrei. de Fabris, Naples

    Google Scholar 

  • Hutton J (1795) Theory of the Earth, with Proofs and Illustrations

    Google Scholar 

  • Ingebritsen SE, Manning CE (2010) Permeability of the continental crust: dynamic variations inferred from seismicity and metamorphism. Geofluids 10(1–2):193–205

    Google Scholar 

  • Kilburn C and McGuire B (2001) Italian volcanoes. Classic Geology in Europe 2. Terra, 166 pp

    Google Scholar 

  • Kilingman WK, Kilingman NP (2013) The year without Summer. St Martin’s Press, New York, p 338

    Google Scholar 

  • Knight C (2003) Hamilton a Napoli. Cultura, svaghi, civiltà di una grande capitale europea. Electa Napoli

    Google Scholar 

  • Lyell C (1832) Principles of geology, vol 2. John Murray, London, p 330

    Google Scholar 

  • Mason BG, Pyle DM, Oppenheimer C (2004) The size and frequency of the largest explosive eruptions on Earth. Bull Volc 66:735–748

    Article  Google Scholar 

  • Mastrolorenzo G, Petrone P, Pappalardo L, Sheridan M (2006) The Avellino 3780-yr-B.P. catastrophe as a worst-case scenario for a future eruption at Vesuvius. PNAS 103:4366–4370

    Article  Google Scholar 

  • Mayer K, Scheu B, Montanaro C, Yilmaz TI, Isaia R, Aßbichler D, Dingwell DB (2016) Hydrothermal alteration of surficial rocks at Solfatara (Campi Flegrei): Petrophysical properties and implications for phreatic eruption processes. J Volcanol Geoth Res 320:128–143

    Article  Google Scholar 

  • Melloni M (1847) Recherches sur les radiations des corps incandescents et sur les couleurs élémentaires du spectre”. Archive des Sciences Physiques, Geneva, pp 238–258

    Google Scholar 

  • Milia A, Torrente MM (2003) Late-Quaternary volcanism and transtensional tectonics in the Bay of Naples, Campanian continental margin. Italy. Mineralogy and Petrology 79(1–2):49–65

    Article  Google Scholar 

  • Mongelli F, Zito G, Ciaranfi N, Pieri P (1989) Interpretation of heat flow density of the Apennine chain, Italy. Tectonophysics 164:267–280

    Article  Google Scholar 

  • Monti P (1968) Ischia preistorica greco romana paleocristiana. Napoli

    Google Scholar 

  • Monti P (1980) Ischia archeologia e storia. Tipografia Porzio, Napoli

    Google Scholar 

  • Monticelli, T. & Covelli, N. (1825): Prodromo della mineralogia vesuviana. Da’ Torchi Del Tramatre, Napoli, XXXIV + 486 pp

    Google Scholar 

  • Monticelli T, Covelli N (1839) Appendice al prodromo della mineralogia vesuviana. Da’ Torchi Del Tramatre, Napoli, p 28

    Google Scholar 

  • Morgan P (1984) The thermal structure and thermal evolution of the continental lithosphere. Phys Chem Earth 15:107–193

    Article  Google Scholar 

  • Mercalli G. (1906) La grande eruzione vesuviana cominciata il 4 Aprile 1906 Mem. Pontif. Accad. Rom. Nuovi Lincei, 24, pp. 1-34 (Roma)

    Google Scholar 

  • Newhall CG, Self S (1982) The volcanic explosivity index (VEI): An estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238

    Article  Google Scholar 

  • Newhall C, Self S, & Robock A (2018) Anticipating future Volcanic Explosivity Index (VEI) 7 eruptions and their chilling impacts. Geosphere

    Google Scholar 

  • Nolan L (1998) Descartes’ Theory of Universals. Philos Stud 89:161–180

    Article  Google Scholar 

  • Oliveri del Castillo A, Montagna S (1984) Nuovi elementi sulla connessione tra termofluidodinamica e geodinamica ai Campi Flegrei (Napoli): bradisismo 1982–1984. Boll. Soc. Geol, Ital

    Google Scholar 

  • Oliveri del Castillo A, Palumbo A, Percolo E (1968) Contributo allo studio della Solfatara di Pozzuoli (Campi Flegrei) mediante osservazione gravimetriche. Ann. Oss. Vesuv. 22(9):217–225

    Google Scholar 

  • Oppenheimer C (2011) Eruptions that shook the world. Cambridge University Press, 392 pp

    Google Scholar 

  • Orsi G, Civetta L, Del Gaudio S, de Vita S, Di Vito MA, Isaia R, Petrazzuoli SM, Ricciardi GP, Ricco C (1999) Short-term round deformations and seismicity in the resurgent Campi Flegrei caldera (Italy): An example of active block-resurgence in a densely populated area. J Volcanol Geotherm Res 91:415–452

    Article  Google Scholar 

  • Parascandola, A (1946) il Monte Nuovo ed il Lago Lucrino: Napoli. Bollettino della Società dei Naturalisti, v. 60, p. 314

    Google Scholar 

  • Parascandola A (1947) Fenomeni bradisismici del Serapeo di Pozzuoli. Stabilmento tipografico G, Genovese

    Google Scholar 

  • Penta F, Conforto B (1951) Risultati di sondaggi e di ricerche geominerarie nell’isola d’Ischia dal 1939 al 1943 nel campo di vapore, delle acque termali e delle forze endogene in generale. Ann Geofis 4:159–192

    Google Scholar 

  • Pescatore T (1978) Evoluzione tettonica del bacino irpino (Italia meridionale) durante il Miocene. Boll Soc Geol Ital 97:783–805

    Google Scholar 

  • Press F., Siever R. (1998). Earth. Freeman, New York

    Google Scholar 

  • Perret FA (1924)The Vesuvius eruption of 1906 Carnegie Istit. Wash., 339 (1924), pp. 1-152

    Google Scholar 

  • Pyle DM (1995) Mass and energy budgets of explosive volcanic eruptions. Geophys Res Lett 5:563–566

    Article  Google Scholar 

  • Rabaute A, Yven B, CheliniW ZamoraM (2003) Subsurface geophysics of Phlegrean Fields: New insights from downhole measurements. J Geophys Res 108:2172. https://doi.org/10.1029/20015B001436

    Article  Google Scholar 

  • Ranalli, G., 1995. Rheology of the Earth. Chapman & Hall, 412 pp

    Google Scholar 

  • Rapolla A, Fedi M, Fiume G (1989) Crustal structure of the Ischia-Phlegrean geothermal field, near Naples, Italy, from gravity and aeromagnetic data. Geoph. Journ. 97:409–419

    Article  Google Scholar 

  • Rolandi G, Petrosino P, Mc Geehin J (1998) The interplinian activity at Somma-Vesuvius in the last 3500 years. J Volcanol Geoth Res 82(1):19–52

    Article  Google Scholar 

  • Rayleigh L (1916) On convection currents in a horizontal layer of fluid when the higher temperature is on the other side. Philos Mag 32:529–543

    Article  Google Scholar 

  • Ricciardi GP (2009) Diario del Monte Vesuvio. Venti secoli di immagini e cronache di un volcano nella città, Edizioni Scientifiche e Artistiche

    Google Scholar 

  • Rittmann A (1930) Geologie der Insel Ischia. (Berlino) Zeitschrift für Vulkanologie, VI, 268 pp

    Google Scholar 

  • Roberts GP (2006) Multi-seismic cycle velocity and strain fields for an active normal fault system, central Italy. Earth Planet Sci Lett 251:44–51

    Article  Google Scholar 

  • Rolandi G, Bellucci F, Heizler MT, Belkin HE, De Vivo B (2003) Tectonic controls on the genesis of ignimbrites from the Campanian Volcanic Zone, southern Italy. Mineral Petrol 79:3–32

    Article  Google Scholar 

  • Santacroce, R. (ed) (1987) Somma-Vesuvius. Quaderni de La Ricerca Scientifica 114, vol 8, CNR Roma, pp 1-252

    Google Scholar 

  • Santacroce R and Sbrana A (2003) geological map of Vesuvius. SELCA Firenze

    Google Scholar 

  • Santacroce R, Cioni R, Marianelli P, Sbrana A, Sulpizio R, Zanchetta G, Donahue DJ, Joron JL (2008) Age and whole rockeglass compositions of proximal pyroclastics from the major explosive eruptions of Somma-Vesuvius: a review as a tool for distal tephrostratigraphy. J Volcanol Geoth Res 177:1–18

    Article  Google Scholar 

  • Sbrana A, Fulignati P, Marianelli P, Boyce AJ, Cecchetti A (2009) Exhumation of an active magmatic-hydrothermal system in a resurgent caldera environment: the example of Ischia (Italy). J Geol Soc London 166:1016–1073

    Article  Google Scholar 

  • Scacchi, A. (1887): Catalogo dei minerali vesuviani con la notizia della loro composizione e del loro giacimento. Lo Spettatore del Vesuvio e dei Campi Flegrei, 65-75

    Google Scholar 

  • Scacchi, A. (1888): Catalogo dei minerali e delle rocce vesuviane per servire alla storia del Vesuvio ed al commercio dei suoi prodotti. Atti del Real Istituto di Incoraggiamento alle Scienze Naturali di Napoli, Serie 4, 1(5), 1-54

    Google Scholar 

  • Scandone R, Bellucci F, Lirer L, Rolandi G (1991) The structure of the Campanian Plain and the activity of Neapolitan volcanoes. J Volcanol Geoth Res 48:1–32

    Article  Google Scholar 

  • Scarpati C, Perrotta A, Lepore S, Calvert A (2013) Eruptive history of Neapolitan volcanoes: constraints from 40Ar-39Ar dating. Geol Mag 150:412–425

    Article  Google Scholar 

  • Siebert L, Simkin T, Kimberly P (2010) Volcanoes of the World. University of California Press

    Google Scholar 

  • Sigurdsson H (ed) (2000) Encyclopedia of Volcanoes. Academic Press, San Diego, CA, p 1417

    Google Scholar 

  • Smith VC, Isaia R, Engwell SL, Albert PG (2016) Tephra dispersal during the Campanian Ignimbrite (Italy) eruption: implications for ultra-distal ash transport during the large caldera-forming eruption Bull. Volcanol 78:45

    Article  Google Scholar 

  • Sparice D, Scarpati C, Perrotta A, Mazzeo FC, Calvert AT, Lanphere MA (2017) New insights on lithofacies architecture, sedimentological characteristics and volcanological evolution of pre-caldera (> 22 ka), multi-phase, scoria-and spatter-cones at Somma-Vesuvius. J Volcanol Geoth Res 347:165–184

    Article  Google Scholar 

  • Spence DA, Turcotte DL (1985) Magma-driven propagation of cracks. J Geophys Res 90:575–580

    Article  Google Scholar 

  • Suess E (1883-1901) Das Antlitz der Erde, 3 voll

    Google Scholar 

  • Torre L (1993) Napoli sopra e sotto. Torre Editrice, Geologia, Sismologia e Vulcanologia

    Google Scholar 

  • Tait S, Jaupart C, Sylvie Vergniolle S (1989) Pressure, gas content and eruption periodicity of a shallow, crystallising magma chamber. Earth Planet Sci Lett 92(1):107–123

    Article  Google Scholar 

  • Vezzoli L (ed) (1988) Island of Ischia. Quaderni de La Ricerca Scientifica – CNR, 114, 10

    Google Scholar 

  • Vitale S, Isaia R (2014) Fractures and faults in volcanic rocks (Campi Flegrei, southern Italy): insight into volcano-tectonic processes. Int J Earth Sci 103(3):801–819

    Article  Google Scholar 

  • Winchester S (2004) Krakatoa. Harper Perennial

    Google Scholar 

  • Zollo A, Gasparini P, Virieux J, le Meur H, De Natale G, Biella G, Boschi E, Captano P, de Franco R, dell’Aversana P, de Matteis R, Guerra I, Iannaccone G, Mirabile L, Vilardo G (1996) Seismic evidence for a low-velocity zone in the upper crust beneath Mount Vesuvius. Science 274:592–594

    Article  Google Scholar 

  • Zollo A, Judenherc S, Auger E, D’Auria L, Virieux J, Capuano P, Chiarabba C, de Franco R, Makris J, Nichelini A, Musacchio G (2003) Evidence for the buried rim of Campi Flegrei caldera from 3-D active seismic imaging. Geophys Res Lett 30:2002. https://doi.org/10.1029/2003GL018173

    Article  Google Scholar 

  • Zollo A, Maercklin N, Vassallo M, Dello Iacono D, Virieux J, Gasparini P (2008) Seismic reflections reveal a massive melt layer feeling Campi Flegrei caldera. Geophys Res Lett 35:L12306. https://doi.org/10.1029/2008GL034242

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Carlino .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carlino, S. (2019). Volcanic Activity and Processes. In: Neapolitan Volcanoes. GeoGuide. Springer, Cham. https://doi.org/10.1007/978-3-319-92877-7_2

Download citation

Publish with us

Policies and ethics