Neuroscience Experiment for Graphical Visualization in the FITradeoff Decision Support System

  • Lucia Reis Peixoto Roselli
  • Eduarda Asfora FrejEmail author
  • Adiel Teixeira de Almeida
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 315)


The neuroscience approach is considered to be a study of the neural system and its implications for processes in the human body. Behavioral studies in Multicriteria Decision Making (MCDM) still have a gap and in this context, Neuroscience can be used as a decision support tool. Therefore, the aim of this research study is to explore the potential of using graphical visualization in the FITradeoff Decision Support System (DSS) by undertaking an eye-tracking experiment and applying it to a decision problem. In the end, based on the results, suggestions are made to the analyst and improvements are made to the design of the DSS so that solutions could be found that accurately express a decision maker’s preferences.


Neuroscience Multicriteria decision-making FITradeoff Eye-tracking 



This study was partially sponsored by the Brazilian Research Council (CNPq) for which the authors are most grateful.


  1. 1.
    Ares, G., et al.: Influence of rational and intuitive thinking styles on food choice: preliminary evidence from an eye-tracking study with yogurt labels. Food Qual. Prefer. 31, 28–37 (2014)CrossRefGoogle Scholar
  2. 2.
    de Almeida, A.T., De Almeida, J.A., Costa, A.P.C.S., De Almeida-Filho, A.T.: A new method for elicitation of criteria weights in additive models: flexible and interactive tradeoff. Eur. J. Oper. Res. 250, 179–191 (2016)CrossRefGoogle Scholar
  3. 3.
    Fehr, E., Camerer, C.: Social neuroeconomics: the neural circuitry of social preferences. Trends Cogn. Sci. 11, 419–427 (2007)CrossRefGoogle Scholar
  4. 4.
    Glimcher, P.W., Rustichini, A.: Neuroeconomics: the consilience of brain and decision. Science 5695, 447–452 (2004)CrossRefGoogle Scholar
  5. 5.
    Goucher-Lambert, K., Moss, J., Cagan, J.: Inside the mind: using neuroimaging to understand moral product preference judgments involving sustainability. J. Mech. Des. 139, 41–103 (2017)CrossRefGoogle Scholar
  6. 6.
    Guixeres, J., et al.: Consumer Neuroscience-based metrics predict recall, liking and viewing rates in online advertising. Front. Psychol. 8 (2017).
  7. 7.
    Hunt, L.T., Dolan, R.J., Behrens, T.E.: Hierarchical competitions subserving multi-attribute choice. Nat. Neurosci. 17, 1613–1622 (2014)CrossRefGoogle Scholar
  8. 8.
    Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives - Preferences, and Value Tradeoffs. Wiley, New York (1976)Google Scholar
  9. 9.
    Khushaba, R.N.: Consumer neuroscience: assessing the brain response to marketing stimuli using electroencephalogram (EEG) and eye tracking. Expert Syst. Appl. 40, 3803–3812 (2013)CrossRefGoogle Scholar
  10. 10.
    Kothe, C.A., Makeig, S.: Estimation of task workload from EEG data: new and current tools and perspectives. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2011)Google Scholar
  11. 11.
    Laeng, B., Sirois, S., Gredebäck, G.: Pupillometry: a window to the preconscious? Perspect. Psychol. Sci. 7, 18–27 (2012)CrossRefGoogle Scholar
  12. 12.
    Mohr, P.N.C., Biele, G., Heekeren, H.: Neural processing of risk. J. Neurosci. 30, 6613–6619 (2010)CrossRefGoogle Scholar
  13. 13.
    Morin, C.: Neuromarketing: the new science of consumer behavior. Society 48, 131–135 (2011)CrossRefGoogle Scholar
  14. 14.
    Porter, G., Troscianko, T., Gilchrist, I.D.: Effort during visual search and counting: insights from pupillometry. Q. J. Exp. Psychol. 60, 211–229 (2007)CrossRefGoogle Scholar
  15. 15.
    Rangel, A., Camerer, C., Montague, P.R.: A framework for studying the neurobiology of value-based decision making. Nat. Rev. Neurosci. 9, 545–556 (2008)CrossRefGoogle Scholar
  16. 16.
    Riedl, R., Davis, F.D., Hevne, R., Alan, R.: Towards a NeuroIS research methodology: intensifying the discussion on methods, tools, and measurement. J. Assoc. Inf. Syst. 15, I (2014)Google Scholar
  17. 17.
    Sanfey, A.G., Rilling, J.K., Aronson, J.A., Nystrom, L.E., Cohen, J.P.: The neural basis of economic decision-making in the ultimatum game. Science 5626, 1755–1758 (2003)CrossRefGoogle Scholar
  18. 18.
    Sharma, N., Gedeon, T.: Objective measures, sensors and computational techniques for stress recognition and classification: a survey. Comput. Methods Programs Biomed. 108, 1287–1301 (2012)CrossRefGoogle Scholar
  19. 19.
    Slanzi, G., Balazs, J., Velásquez, J.D.: Predicting Web user click intention using pupil dilation and electroencephalogram analysis. In: IEEE/WIC/ACM International Conference on Web Intelligence (WI). IEEE (2016)Google Scholar
  20. 20.
    Smith, D.V., Huettel, S.A.: Decision neuroscience: neuroeconomics. Wiley Interdiscip. Rev. Cogn. Sci. 1, 854–871 (2010)CrossRefGoogle Scholar
  21. 21.
    Sylcott, B., Cagan, J., Tabibnia, G.: Understanding consumer tradeoffs between form and function through metaconjoint and cognitive neuroscience analyses. J. Mech. Des. 135 (2013). Scholar
  22. 22.
    Weber, M., Borcherding, K.: Behavioral influences on weight judgments in multi-attribute decision making. Eur. J. Oper. Res. 67, 1–12 (1993)CrossRefGoogle Scholar
  23. 23.
    Zhao, Y.L., Siau, K.: Cognitive neuroscience in information systems research. J. Database Manag. 27, 58–73 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lucia Reis Peixoto Roselli
    • 1
  • Eduarda Asfora Frej
    • 1
    Email author
  • Adiel Teixeira de Almeida
    • 1
  1. 1.CDSID - Center for Decision Systems and Information DevelopmentFederal University of Pernambuco – UFPERecifeBrazil

Personalised recommendations