Skip to main content

Oxbow Lakes: Hydromorphology

  • Chapter
  • First Online:

Part of the book series: Springer Geography ((SPRINGERGEOGR))

Abstract

Cut-off oxbows are the most remarkable fluvial landforms and the most valuable wetland habitats in the protected floodplain of the Lower Drava River in Hungary. Their geomorphic evolution, however, has not been studied yet. Recently, a complex hydromorphological survey of oxbows covered their geographical position, connection with the main Drava channel, water balance, hydrogeological properties, water retention capacity and groundwater flow in their environs. The purpose of the investigations was to assess the potential for oxbow lake and floodplain rehabilitation. Two zones of oxbows, possibly differring in age and geomorphological evolution (the date of cutoff), have been identified and preliminarily described. The focus of research was on the Cún-Szaporca lake system, part of the Danube-Drava National Park and a Ramsar area, where the clogging of the oxbow bed, a critical factor of transmissivity, was analyzed in detail. For planning landscape-scale rehabilitation (the Old Drava Programme) more information on the old courses of the Drava and its preserved but gradually disappearing traces (the present-day oxbow lakes) would be necessary.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • AGROTOPO (2013–2017) Agrotopographic Data Base. Institute for Soil Sciences and Agricultural Chemistry Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest. https://maps.rissac.hu:3344/webappbuilder/apps/2/

  • Amoros C, Bornette G (2002) Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biol 47:761–776

    Article  Google Scholar 

  • Bándi G (1973) Baranya megye az őskorban (Baranya County in prehistoric times). In: Bándi G, Burger A, Fülep F, Kiss A (eds) Baranya története az őskortól az Árpád korig (History of Baranya County from prehistory to the Árpáds’ Age). Papers of the Janus Pannonius Museum, Pécs 15:12–17 (in Hungarian)

    Google Scholar 

  • Bizjak A, Cunder M, Marovt L, Skrt P, Softič M, Zinke A (2014) The SEE river toolkit for facilitating cross-sectoral management of river corridors. Booklet 2: Practical applications on the Drava River. Institute for Water of the Republic of Slovenia, Ljubljana. 62 pp

    Google Scholar 

  • Blanka V, Mezősi G, Meyer B (2013) Projected changes in the drought hazard in Hungary due to climate change. Időjárás 117(2):219–237

    Google Scholar 

  • Borhidi A (1997) Social behaviour types, their naturalness and relative indicator values of the higher plants of the Hungarian flora. Acta Botanica Hungariae 39:97–182

    Google Scholar 

  • Brierley GJ, Fryirs KA (2005) Geomorphology and river management. Applications of the River styles framework. Blackwell Publishing, Carlton, Victoria, p 398

    Google Scholar 

  • Brookes A (1996) Floodplain restoration and rehabilitation. In: Anderson MG, Walling DE, Bates PD (eds) Floodplain processes, Chap 17. John Wiley & Sons, Chichester, pp 553–576

    Google Scholar 

  • Buchberger P (1975) A Dráva-völgy árvédelmének története (History of flood control in the Drava Valley). Vízügyi Közlemények 1:103–112 (in Hungarian)

    Google Scholar 

  • Čermák J, Prax A (2001) Water balance of a Southern Moravian floodplain forest under natural and modified soil water regimes and its ecological consequences. Ann Forest Sci 58:15–29

    Article  Google Scholar 

  • Čermák J, Prax A (2009) Transpiration and soil water supply in floodplain forests. Ekológia (Bratislava) 28(3):248–254

    Article  Google Scholar 

  • Corenblit D, Tabacchi E, Steiger J, Gurnell AM (2007) Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: a review of complementary approaches. Earth Sci Rev 84(1):56–86

    Article  Google Scholar 

  • Dawidek J, Ferencz B (2014) Water balance of selected floodplain lake basins in the Middle Bug River valley. Hydrol Earth Syst Sci 18:1457–1465. https://doi.org/10.5194/hess-18-1457-2014

    Article  Google Scholar 

  • DDKÖVIZIG (2012) Revitalization of the Cún-Szaporca oxbow system. Final Master Plan. South-Transdanubian Environment and Water Directorate (DDKÖVIZIG), Pécs. 100 pp. http://vpf.vizugy.hu/uploads/ddvizig/projekt/lezarult-fejlesztesek/regionalis/INTERREG_IV_vegleges_master_plan_angol.pdf

  • DD-KVTF (2013) Jegyzőkönyv közmeghallgatásról: a Dél-dunántúli Vízügyi Igazgatóság “A Cún –Szaporcai holtág vízpótlása az Ős-Dráva Program keretén belül” projekt környezeti hatásvizsgálati eljárása (Protocol of the Public Hearing on the EIS procedure of the project “Water replenishment of the Cún-Szaporca oxbow within the Old Drava Programme” by the South Transdanubian Water Management Directorate). South Transdanubian Inspectorate for Environmental Protection, Natural Protection and Water Management, Pécs. 3 pp. (in Hungarian)

    Google Scholar 

  • Dépret T, Riquier J, Piégay H (2017) Evolution of abandoned channels: insights on controlling factors in a multi-pressure river system. Geomorphology. https://doi.org/10.1016/j.geomorph.2017.01.036

    Article  Google Scholar 

  • Dragun D, Gavran A, Car V (2014) Hydrographic survey of the River Drava branches in the process of revitalization, flood control and morphological monitoring. In: FIG Congress 2014 Engaging the Challenges - Enhancing the Relevance, Kuala Lumpur, Malaysia 16–21 June 2014. 10 pp. https://www.fig.net/resources/proceedings/fig_proceedings/fig2014/papers/ts06j/TS06J_dragun_gavran_6869.pdf

  • Erskine WD, Warner RF (1988) Geomorphic effects of alternating flood and drought dominated regimes on New South Wales coastal rivers. In: Warner RF (ed) Fluvial geomorphology of Australia. Academic Press, Sydney, pp 223–244

    Google Scholar 

  • Fleit E, Márk L, Sindler Cs (2012) Restoration of Szaporca oxbow system at River Drava. South-Transdanubian Environment Protection and Water Management Directorate, Pécs. 23 pp

    Google Scholar 

  • FLUVIUS (2007) Hydromorphological survey and mapping of the Drava and Mura Rivers. FLUVIUS, Floodplain Ecology and River Basin Management, Vienna. 140 pp

    Google Scholar 

  • González del Tánago M, Gurnell AM, Belletti B, García de Jalón D (2015) Indicators for river system hydromorphological character and dynamics: understanding current conditions and guiding sustainable river management. Aquatic Syst 78(1):35–55. https://doi.org/10.1007/s00027-015-0429-0

    Article  Google Scholar 

  • Graf WL (2006) Downstream hydrologic and geomorphic effects of large dams on America rivers. Geomorphology 79(3):336–360

    Article  Google Scholar 

  • Grlica I (2008) Studija biološke raznolikosti rijeke Drave: Dravske mrtvice i odvojeni rukavci 2 dio (Study of biological diversity of the Drava River: Drava oxbows and side-arms). State Institute for Nature Protection, Virovitica. 79 pp. http://www.dzzp.hr/dokumenti_upload/20100423/dzzp201004231344260.pdf (in Croatian)

  • Gurnell AM, Corenblit D, García de Jalón D, González del Tánago M, Grabowski RC, O’Hare MT, Szewczyk M (2015) A conceptual model of vegetation-hydrogeomorphology interactions within river corridors. River Res Appl 32(2):142–163. https://doi.org/10.1002/rra.2928

    Article  Google Scholar 

  • Gurnell AM, O’Hare JM, O’Hare MT, Dunbar MJ, Scarlett PM (2010) An exploration of associations between assemblages of aquatic plant morphotypes and channel geomorphological properties within British rivers. Geomorphology 116(1):135–144

    Article  Google Scholar 

  • Gyenizse P, Lóczy D (2010) The impact of microtopography and drainage on land use and settlement development in the Hungarian Drava Plain. Hrvatski Geografski Glasnik 72(1):5–20

    Article  Google Scholar 

  • Habersack H, Schober B, Hauer C (2015) Floodplain evaluation matrix (FEM): an interdisciplinary method for evaluating river floodplains in the context of integrated flood risk management. Nat Hazards 75:5–32. https://doi.org/10.1007/s11069-013-0842-4

  • Halford KJ, Kuniansky EL (2002) Documentation of spreadsheets for the analysis of aquifer pumping and slug test data. US Geological Survey, Reston, VA (USGS Open-File Report 02-197)

    Google Scholar 

  • Heiler G, Hein T, Schiemer F, Bornette G (1995) Hydrological connectivity and flood pulses as the central aspects for the integrity of a river-floodplain system. Regulated Rivers: Res Manag 11:351–361. https://doi.org/10.1002/rrr.3450110309

  • Hein T, Baranyi C, Reckendorfer W, Schiemer F (2004) The impact of surface water exchange on the nutrient and particle dynamics in side-arms along the River Danube, Austria. Sci Total Environ 328:207–218. https://doi.org/10.1016/j.scitotenv.2004.01.006

  • Hein T, Schwarz U, Habersack H, Nichersu I, Preiner S, Willby N, Weigelhofer G (2015) Current status and restoration options for floodplains along the Danube River. Sci Total Environ 543:778–790. https://doi.org/10.1016/j.scitotenv.2015.09.073

    Article  Google Scholar 

  • Káldy-Nagy Gy (1960) Baranya megye XVI. századi török adóösszeírásai (Turkish defters of Baranya County in the 16th century). Hungarian Linguistic Society, Budapest (in Hungarian)

    Google Scholar 

  • Kiedrzyńska E, Kiedrzyński M, Zalewski M (2015) Sustainable floodplain management for flood prevention and water quality improvement. Nat Hazards 76:955–977. https://doi.org/10.1007/s11069-014-1529-1

  • Kiss T, Andrási G, Hernesz P (2011) Morphological alteration of the Dráva as the result of human impact. AGD Landscape Environ 5(2):58–75

    Google Scholar 

  • Kiss A, Nikolić Z (2015) Droughts, dry spells and low water levels in medieval Hungary (and Croatia) I: the great droughts of 1362, 1474, 1479, 1494 and 1507. J Environ Geogr 8(1–2):11–22. https://doi.org/10.1515/jengeo-2015-0002

  • Lóczy D, Dezső J, Czigány Sz, Gyenizse P, Pirkhoffer E, Halász A (2014) Rehabilitation potential of the Drava River floodplain in Hungary. In: Gâştescu P, Marszelewski W, Breţcan P (eds) Water resources and wetlands. In: Proceedings of the 2nd International Conference, 11–13 September 2014, Tulcea, Romania. Transversal Publishing House, Târgoviste, 21–29

    Google Scholar 

  • Lóczy D, Dezső J, Sz Czigány, Prokos H, Tóth G (2017) An environmental assessment of water replenishment to a floodplain lake. J Environ Manag 202(2):337–347. https://doi.org/10.1016/j.jenvman.2017.01.020

    Article  Google Scholar 

  • Lóczy D, Kis É, Schweitzer F (2009) Local flood hazards assessed from channel morphometry along the Tisza River in Hungary. Geomorphology 113(3):200–209. https://doi.org/10.1016/j.geomorph.2009.03.013

    Article  Google Scholar 

  • Lovász Gy (1964) Geomorfológiai tanulmányok a Dráva-völgyben (Geomorphological studies in the Drava Valley.) Papers of the Transdanubian Scientific Institute, Hungarian Academy of Sciences, Pécs. 67–114 (in Hungarian)

    Google Scholar 

  • Lovász Gy (2013) A jelenkori tektonika hatása a Duna, a Tisza és a Dráva hidrológiai folyamataira (The impact of Holocene tectonics on hydrological processes on the Danube, Tisza and Drava Rivers). Földrajzi Közlemények 137(3):248–256 (in Hungarian with English abstract)

    Google Scholar 

  • Majer J (1998) A Dráva vízminőségének hosszú távú alakulása (Long-term water quality trends of the Drava River). Manuscript. Institute of Environmental Sciences, University of Pécs, Pécs. 39 pp (in Hungarian)

    Google Scholar 

  • Mclin SG (2007) Hydrogeologic characterization of a groundwater system using sequential aquifer tests and flowmeter logs. In: Kues BS, Kelley SA, Lueth VW (eds) Geology of the Jemez Region II. New Mexico Geological Society 58th Annual Fall Field Conference Guidebook. 485–491. http://nmgs.nmt.edu/publications/guidebooks/58

  • Mezősi G, Blanka V, Zs Ladányi, Bata T, Urdea P, Frank A, Meyer B (2016) Expected mid- and long-term changes in drought hazard for the South-Eastern Carpathian Basin. Carpathian J Earth Environ Sci 11(2):355–366

    Google Scholar 

  • Nanson GC, Croke JC (1992) A genetic classification of floodplains. Geomorphology 4(6):459–486

    Article  Google Scholar 

  • National Research Council (1992) Restoration of aquatic ecosystems: science, technology and public policy. The National Academies Press, Washington, DC 576 pp. http://www.nap.edu/catalog/1807.html

  • Neuman SP (1972) Theory of flow in unconfined aquifers considering delayed gravity response of the water table. Water Resour Res 8(4):1031–1045

    Article  Google Scholar 

  • Ortmann-Ajkai A, Czirok A, Dénes A, Oldal I, Fehér G, Gots Zs, Kamarás-Buchberger E, Szabó E, Vörös Zs, Wágner L (2003) Dráva holtágak komplex állapotértékelése (Complex baseline survey of the Drava oxbows). In: Hanyus E (ed) Az EU Víz Keretirányelvének bevezetése a Dráva vízgyűjtőjén (Introduction of the EU Water Framework Directive). WWF Hungary, Budapest. 68–79 (in Hungarian)

    Google Scholar 

  • Pálfai I (2001) Magyarország holtágai (Oxbows in Hungary). Hungarian Ministry for Transport and Water Management, Budapest. 231 pp (in Hungarian)

    Google Scholar 

  • Piégay H, Darby SE, Mosselman E, Surian N (2005) A review of techniques available for delimiting erodible river corridor: a sustainable approach to managing bank erosion. River Res Appl 21:773–789. https://doi.org/10.1002/rra.881

    Article  Google Scholar 

  • Reckendorfer W, Funk A, Gschöpf C, Hein T, Schiemer F (2013) Aquatic ecosystem functions of an isolated floodplain and their implications for flood retention and management. J Appl Ecol 50:119–128. https://doi.org/10.1111/1365-2664.12029

    Article  Google Scholar 

  • Richards KS (1982) Rivers: form and process in alluvial channels. Methuen, London, p 357

    Google Scholar 

  • Rinaldi M, Gurnell AM, González del Tánago M, Bussettini M, Hendricks D (2015) Classification and characterization of river morphology and hydrology to support management and restoration. Aquatic Stud 78(1):17–33. https://doi.org/10.1007/s00027-015-0438-z

    Article  Google Scholar 

  • Roni P, Pess G, Hanson K, Pearsons M (2013) Selecting appropriate stream and watershed restoration techniques. In: Roni P, Beechie T (eds) Stream and watershed restoration: a guide to restoring riverine processes and habitats. John Wiley and Sons, Chichester, pp 144–188

    Google Scholar 

  • Sanford W (2002) Recharge and groundwater models: an overview. Hydrogeol J 10:110–120

    Article  Google Scholar 

  • Schober B, Hauer C, Habersack H (2015) A novel assessment of the role of Danube floodplains in flood hazard reduction (FEM method). Nat Hazards 75(Supplement 1):33–50. https://doi.org/10.1007/s11069-013-0880-y

    Article  Google Scholar 

  • Schwarz WL, Malanson GP, Weirich FH (1996) Effect of landscape position on the sediment chemistry of abandoned-channel wetlands. Landscape Ecology 11:27–38

    Article  Google Scholar 

  • Thoms MC (2003) Floodplain–river ecosystems: lateral connections and the implications of human interference. Geomorphology 56(3–4):335–349. https://doi.org/10.1016/s0169-555x(03)00160-0

  • Tockner K, Lorang MS, Stanford JA (2010a) River flood plains are model ecosystems to test general hydrogeomorphic and ecological concepts. River Res Appl 26:76–86

    Article  Google Scholar 

  • Tockner K, Pusch MT, Borchardt D, Lorang MS (2010b) Multiple stressors in coupled river-floodplain ecosystems. Freshwater Biol 55(1):135–151

    Article  Google Scholar 

  • Vajda T (2001) Adatok a Dráva menti középkori fokgazdálkodásról (Data on the medieval ‘fok’ economy on the Drava River). In: Weisz B, Balogh L, Szarka J (eds) Tanulmányok a középkorról (Studies on the Middle Ages). Szegedi Középkorász Műhely, Szeged, pp 125–137 (in Hungarian)

    Google Scholar 

  • Valentová J, Valenta P, Weyskrabová L (2010) Assessing the retention capacity of a floodplain using a 2D numerical model. J Hydrol Hydromech 58(4):221–232. https://doi.org/10.2478/v10098-010-0021-1

    Article  Google Scholar 

  • Viczián I, Cs Zatykó (2011) Geomorphology and environmental history in the Drava valley, near Berzence. Hungarian Geograph Bull 60(4):357–377

    Google Scholar 

  • VKKI (2010) Vízgyűjtő-gazdálkodási terv. Dráva részvízgyűjtő (Watershed Management Plan: Drava Partial Watershed). Vízügyi és Környezetvédelmi Központi Igazgatóság (Central Directorate for Water Management and Environmental Protection), Budapest. 162 pp (in Hungarian)

    Google Scholar 

  • Waidbacher H, Schultz H (2005) The Floodplain Index—a new approach for assessing the ecological status of river/floodplain-systems according to the EU Water Framework Directive. Large Rivers 15(1–4):169–185. http://www.boku.ac.at/hfa/forschung/graf/publications/large_rivers.pdf

  • Ward JV, Tockner K, Arscott DB, Claret C (2002) Riverine landscape diversity. Freshwater Biol 47(4):517–539

    Article  Google Scholar 

  • Winter TC (1999) Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol J 7:28–45

    Article  Google Scholar 

  • WWF (2002) Áttekintés a Dráva alsó vízgyűjtőjének tájhasználatáról (An overview of land use in the Lower Drava River catchment). Report for the Worldwide Fund for Nature Hungary, Budapest, 142 pp (in Hungarian)

    Google Scholar 

  • WWF International (2010) Assessment of the restoration potential along the Danube and main tributaries. Working paper for the Danube River Basin. Final Draft. World-Wide Fund for Nature,Vienna. 60 pp. http://assets.panda.org/downloads/wwf_restoration_potential_danube.pdf

Download references

Acknowledgements

Authors are grateful for financial support from the Hungarian National Scientific Fund (OTKA, contracts K 104552 and K 108755) and for help from the South-Transdanubian Water Management Directorate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dénes Lóczy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lóczy, D., Dezső, J., Gyenizse, P., Czigány, S., Tóth, G. (2019). Oxbow Lakes: Hydromorphology. In: Lóczy, D. (eds) The Drava River. Springer Geography. Springer, Cham. https://doi.org/10.1007/978-3-319-92816-6_12

Download citation

Publish with us

Policies and ethics