Skip to main content

Irregular Behaviour of Class Numbers and Euler-Kronecker Constants of Cyclotomic Fields: The Log Log Log Devil at Play

  • Chapter
  • First Online:
Irregularities in the Distribution of Prime Numbers

Abstract

Kummer (1851) and, many years later, Ihara (2005) both posed conjectures on invariants related to the cyclotomic field \(\mathbb Q(\zeta _q)\) with q a prime. Kummer’s conjecture concerns the asymptotic behaviour of the first factor of the class number of \(\mathbb Q(\zeta _q)\) and Ihara’s the positivity of the Euler-Kronecker constant of \(\mathbb Q(\zeta _q)\) (the ratio of the constant and the residue of the Laurent series of the Dedekind zeta function \(\zeta _{\mathbb Q(\zeta _q)}(s)\) at s = 1). If certain standard conjectures in analytic number theory hold true, then one can show that both conjectures are true for a set of primes of natural density 1, but false in general. Responsible for this are irregularities in the distribution of the primes.

With this survey we hope to convince the reader that the apparently dissimilar mathematical objects studied by Kummer and Ihara actually display a very similar behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, the title of this paper ends with a question mark. Since it is considered very bad style to have it in the title of a paper, this footnote might be a better place. Not putting the question mark would go against the moral of this paper.

  2. 2.

    The similarity was first noted by Andrew Granville, see acknowledgment.

  3. 3.

    I have not come across this formula in the literature.

  4. 4.

    The authors of [7], unaware of Granville’s work and the fact that they were dealing with a(n) (ex-)conjecture of Erdős, gave a short different proof using a 1961 paper of…Erdős [6] himself. (The title of [6] has “G. Golomb” instead of the correct “S. Golomb”.)

  5. 5.

    He assumes GRH. The reproof given in [7, p. 1470] shows that ERH is sufficient.

  6. 6.

    Having the larger error term o(L 3) would also suffice for our purposes.

References

  1. N.C. Ankeny, S. Chowla, The class number of the cyclotomic field. Proc. Natl. Acad. Sci. U. S. A. 35, 529–532 (1949)

    Article  MathSciNet  Google Scholar 

  2. N.C. Ankeny, S. Chowla, The class number of the cyclotomic field. Can. J. Math. 3, 486–494 (1951)

    Article  MathSciNet  Google Scholar 

  3. A.I. Badzyan, The Euler–Kronecker constant. Mat. Zametki 87, 45–57 (2010). English Translation in Math. Notes 87, 31–42 (2010)

    Article  MathSciNet  Google Scholar 

  4. E.S. Croot III, A. Granville, Unit fractions and the class number of a cyclotomic field. J. Lond. Math. Soc. (2) 66, 579–591 (2002)

    Article  MathSciNet  Google Scholar 

  5. K. Debaene, The first factor of the class number of the p-th cyclotomic field. Arch. Math. (Basel) 102, 237–244 (2014)

    Article  MathSciNet  Google Scholar 

  6. P. Erdős, On a problem of S. Golomb. J. Aust. Math. Soc. 2, 1–8 (1961/1962)

    Google Scholar 

  7. K. Ford, F. Luca, P. Moree, Values of the Euler ϕ-function not divisible by a given odd prime, and the distribution of Euler-Kronecker constants for cyclotomic fields. Math. Comput. 83, 1447–1476 (2014)

    Google Scholar 

  8. É. Fouvry, Sum of Euler-Kronecker constants over consecutive cyclotomic fields. J. Number Theory 133, 1346–1361 (2013)

    Article  MathSciNet  Google Scholar 

  9. G. Fung, A. Granville, H.C. Williams, Computation of the first factor of the class number of cyclotomic fields. J. Number Theory 42, 297–312 (1992)

    Article  MathSciNet  Google Scholar 

  10. L.J. Goldstein, On the class numbers of cyclotomic fields. J. Number Theory 5, 58–63 (1973)

    Article  MathSciNet  Google Scholar 

  11. A. Granville, On the size of the first factor of the class number of a cyclotomic field. Invent. Math. 100, 321–338 (1990)

    Article  MathSciNet  Google Scholar 

  12. Y. Hashimoto, Euler constants of Euler products. J. Ramanujan Math. Soc. 19, 1–14 (2004)

    Google Scholar 

  13. Y. Hashimoto, Y. Iijima, N. Kurokawa, M. Wakayama, Euler’s constants for the Selberg and the Dedekind zeta functions. Bull. Belg. Math. Soc. Simon Stevin 11, 493–516 (2004)

    Google Scholar 

  14. H. Hasse, Über die Klassenzahl Abelscher Zahlkörper. Mathematische Lehr- bücher und Monographien, Band I (Akademie-Verlag, Berlin, 1952)

    Google Scholar 

  15. Y. Ihara, On the Euler-Kronecker constants of global fields and primes with small norms, in Algebraic Geometry and Number Theory: In Honor of Vladimir Drinfeld’s 50th Birthday, ed. by V. Ginzburg. Progress in Mathematics, vol. 850 (Birkhäuser, Boston, Cambridge, MA, 2006), pp. 407–451

    Google Scholar 

  16. Y. Ihara, On “M-functions” closely related to the distribution of L′L-values. Publ. Res. Inst. Math. Sci. 44, 893–954 (2008)

    Article  MathSciNet  Google Scholar 

  17. Y. Ihara, The Euler-Kronecker invariants in various families of global fields, in Proceedings of Arithmetic Geometry and Coding Theory 10 (AGCT 2005), Séminaires et Congrès, ed. by F. Rodier et al., vol. 21 (2009), pp. 79–102

    Google Scholar 

  18. Y. Ihara, V.K Murty, M. Shimura, On the logarithmic derivatives of Dirichlet L-functions at s = 1. Acta Arith. 137, 253–276 (2009)

    Article  MathSciNet  Google Scholar 

  19. E.E. Kummer, Mémoire sur la théorie des nombres complexes composées de racines de l’unité et des nombres entiers. J. Math. Pures Appl. 16, 377–498 (1851). Collected Works, Vol. I., pp. 363–484

    Google Scholar 

  20. J.C. Lagarias, Euler’s constant: Euler’s work and modern developments. Bull. Am. Math. Soc. (N.S.) 50, 527–628 (2013)

    Article  MathSciNet  Google Scholar 

  21. S. Lang, Cyclotomic Fields I and II, Combined 2nd edn. Graduate Texts in Mathematics, vol. 121 (Springer, New York, 1990)

    Book  Google Scholar 

  22. J.M. Masley, H.L. Montgomery, Cyclotomic fields with unique factorization. J. Reine Angew. Math. 286/287, 248–256 (1976)

    Google Scholar 

  23. J. Maynard, E-mail to author, 04/14/2014

    Google Scholar 

  24. H.L. Montgomery, R.C. Vaughan, The large sieve. Mathematika 20, 119–134 (1973)

    Article  MathSciNet  Google Scholar 

  25. P. Moree, Counting numbers in multiplicative sets: Landau versus Ramanujan. Math. Newsl. 21(3), 73–81 (2011). arXiv:1110.0708

    Google Scholar 

  26. P. Moree, S. Saad Eddin, A. Sedunova, Euler-Kronecker constants for maximal real cyclotomic fields and Kummer’s conjecture (in preparation)

    Google Scholar 

  27. M. Mourtada, V.K. Murty, On the Euler Kronecker constant of a cyclotomic field, II, in SCHOLAR–A Scientific Celebration Highlighting Open Lines of Arithmetic Research: Centre de Recherches Mathematiques Proceedings. Contemporary Mathematics, vol. 655 (American Mathematical Society, Providence, RI, 2015), pp. 143–151

    Google Scholar 

  28. V.K. Murty, The Euler-Kronecker constant of a number field. Ann. Sci. Math. Que. 35, 239–247 (2011)

    MATH  Google Scholar 

  29. M.R. Murty, Y.N. Petridis, On Kummer’s conjecture. J. Number Theory 90, 294–303 (2001)

    Article  MathSciNet  Google Scholar 

  30. M.J.R. Myers, A generalised Kummer’s conjecture. Glasg. Math. J. 52, 453–472 (2010)

    Article  MathSciNet  Google Scholar 

  31. W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 2nd edn. (Springer, Berlin; PWN—Polish Scientific Publishers, Warsaw, 1990)

    Google Scholar 

  32. J.-C. Puchta, On the class number of p-th cyclotomic field, Arch. Math. (Basel) 74, 266–268 (2000)

    Article  MathSciNet  Google Scholar 

  33. M.A. Shokrollahi, Relative class number of imaginary abelian fields of prime conductor below 10000, Math. Comput. 68, 1717–1728 (1999)

    Article  Google Scholar 

  34. C.L. Siegel, Zu zwei Bemerkungen Kummers. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 6, 51–57 (1964). Collected Works III, 438–442

    Google Scholar 

  35. M.A. Tsfasman, Asymptotic behaviour of the Euler-Kronecker constant, in Algebraic Geometry and Number Theory: In Honor of Vladimir Drinfeld’s 50th Birthday, ed. by V. Ginzburg. Progress in Mathematics, vol. 850 (Birkhäuser, Boston, Cambridge, MA, 2006), pp. 453–458

    Google Scholar 

  36. L.C. Washington, Introduction to Cyclotomic Fields. Graduate Texts in Mathematics, vol. 83 (Springer, New York, 1982)

    Google Scholar 

Download references

Acknowledgements

I would like to thank James Maynard for pointing out that one can take C = 1∕246 in Challenge 1. Furthermore, I am grateful to Alexandru Ciolan, Sumaia Saad Eddin and Alisa Sedunova for proofreading and help with editing an earlier version. Ignazio Longhi and the referee kindly pointed out some disturbing typos.

The similarity between Kummer’s and Ihara’s conjectures was pointed out by Andrew Granville after a talk given by Kevin Ford on [7]. At that point the authors of [7] had independently obtained Theorem 1, but not Granville’s Proposition 1, the latter being precisely the result used by Granville to unleash the \(\log \log \log \) devil. Once at the loose, it created havoc also among the Euler-Kronecker constants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter Moree .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moree, P. (2018). Irregular Behaviour of Class Numbers and Euler-Kronecker Constants of Cyclotomic Fields: The Log Log Log Devil at Play. In: Pintz, J., Rassias, M. (eds) Irregularities in the Distribution of Prime Numbers. Springer, Cham. https://doi.org/10.1007/978-3-319-92777-0_8

Download citation

Publish with us

Policies and ethics