Skip to main content

Variational Analysis in Set Optimization

  • Chapter
  • First Online:
  • 2874 Accesses

Part of the book series: Springer Monographs in Mathematics ((SMM))

Abstract

Here we start studying problems of set optimization and interrelated ones of multiobjective optimization, where optimal solutions are understood in various Pareto-type sense with respect to general preference relations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Adly and A. Seeger (2011), A nonsmooth algorithm for cone-constrained eigenvalue problems, Comput. Optim. Appl. 49, 299–318.

    Google Scholar 

  2. S. Al-Homidan, Q. H. Ansari and J.-C. Yao (2008), Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory, Nonlinear Anal. 69, 126–139.

    Google Scholar 

  3. Q. H. Ansari, C. S. Lalitha and M. Mehta (2014), Generalized Convexity, Nonsmooth variational inequalities, and Nonsmooth Optimization, CRC Press, Boca Raton, Florida.

    MATH  Google Scholar 

  4. T. Q. Bao, P. Gupta and B. S. Mordukhovich (2007), Necessary conditions for multiobjective optimization with equilibrium constraints, J. Optim. Theory Appl. 135, 179–203.

    Google Scholar 

  5. T. Q. Bao and B. S. Mordukhovich (2007), Variational principles for set-valued mappings with applications to multiobjective optimization, Control Cybern. 36, 531–562.

    Google Scholar 

  6. T. Q. Bao and B. S. Mordukhovich (2007), Existence of minimizers and necessary conditions in set-valued optimization with equilibrium constraints, Appl. Math. 52, 453–472.

    Google Scholar 

  7. T. Q. Bao and B. S. Mordukhovich (2009), Necessary conditions for super minimizers in constrained multiobjective optimization, J. Global Optim. 43, 533–552.

    Google Scholar 

  8. T. Q. Bao and B. S. Mordukhovich (2010), Relative Pareto minimizers for multiobjective problems: existence and optimality conditions, Math. Program 122, 301–347.

    Google Scholar 

  9. T. Q. Bao and B. S. Mordukhovich (2010), Set-valued optimization in welfare economics, Adv. Math. Econ. 13, 114–153.

    Google Scholar 

  10. T. Q. Bao and B. S. Mordukhovich (2011), Refined necessary conditions in multiobjective optimization with applications to microeconomic modeling, Discrete Contin. Dyn. Syst. 31, 1069–1096.

    Google Scholar 

  11. T. Q. Bao and B. S. Mordukhovich (2012), Sufficient conditions for global weak Pareto solutions in multiobjective optimization, Positivity 16, 579–602.

    Google Scholar 

  12. T. Q. Bao and B. S. Mordukhovich (2012), Extended Pareto optimality in multiobjective problems, in Recent Developments in Vector Optimization, edited by Q. H. Ansari and J.-C. Yao, pp. 467–515, Springer, Berlin.

    Chapter  Google Scholar 

  13. T. Q. Bao and B. S. Mordukhovich (2014), Necessary nondomination conditions in set and vector optimization with variable ordering structures, J. Optim. Theory Appl. 162, 350–370.

    Google Scholar 

  14. T. Q. Bao, B. S. Mordukhovich and A. Soubeyran (2015), Variational analysis in psychological modeling, J. Optim. Theory Appl. 164, 290–315.

    Google Scholar 

  15. T. Q. Bao, B. S. Mordukhovich and A. Soubeyran (2015), Fixed points and variational principles with applications to capability theory of wellbeing via variational rationality, Set-Valued Var. Anal. 23, 375–398.

    Google Scholar 

  16. T. Q. Bao, B. S. Mordukhovich and A. Soubeyran (2015), Minimal points, variational principles, and variable preferences in set optimization, J. Nonlinear Convex Anal. 16, 1511–1537.

    Google Scholar 

  17. T. Q. Bao and C. Tammer (2012), Lagrange necessary conditions for Pareto minimizers in Asplund spaces and applications, Nonlinear Anal. 75, 1089–1103.

    Google Scholar 

  18. A. Barbagallo and P. Mauro (2016), A general quasi-variational problem of Cournot-Nash type and its inverse formulation, J. Optim. Theory Appl. 170 (2016), 476–492.

    Article  MathSciNet  Google Scholar 

  19. E. M. Bednarczuk and D. Zagrodny (2009), Vector variational principle, Arch. Math. 93, 577–586.

    Google Scholar 

  20. S. Bellaassali and A. Jourani (2008), Lagrange multipliers for multiobjective programs with a general preference, Set-Valued Anal. 16, 229–243.

    Google Scholar 

  21. M. Bianchi, N. Hadjisavvas and S. Schaible (1997), Vector equilibrium problems with generalized monotone bifunctions, J. Optim. Theory Appl. 92, 527–542.

    Google Scholar 

  22. G. Bigi, M. Castellani, M. Pappalardo and M. Passacantando (2013), Existence and solution methods for equilibria, European J. Oper. Res. 227, 1–11.

    Google Scholar 

  23. E. Blum and W. Oettli (1994), From optimization and variational inequalities to equilibrium problems, Math. Student 63, 123–145.

    Google Scholar 

  24. H. Bonnel, A. N. Iusem and B. F. Svaiter (2005), Proximal methods in vector optimization, SIAM J. Optim. 15, 953–970.

    Google Scholar 

  25. J. M. Borwein and R. Goebel (2003), Notions of relative interior in Banach spaces, J. Math. Sci. 115, 2542–2553.

    Google Scholar 

  26. J. M. Borwein and A. S. Lewis (1992), Partially finite convex programming, I: quasi relative interiors and duality theory, Math. Prog. 57, 15–48.

    Google Scholar 

  27. J. M. Borwein, Y. Lucet and B. S. Mordukhovich (2000), Compactly epi-Lipschitzian convex sets and functions in normed spaces, J. Convex Anal. 7, 375–393.

    Google Scholar 

  28. J. M. Borwein and D. Zhuang (1993), Super efficiency in vector optimization, Trans. Amer. Math. Soc. 338, 105–122.

    Google Scholar 

  29. R. I. Boţ (2010), Conjugate Duality in Convex Optimization, Springer, Berlin.

    Book  Google Scholar 

  30. R. I. Boţ (2012), An upper estimate for the Clarke subdifferential of an infimal value function proved via the Mordukhovich subdifferential, Nonlinear Anal. 75, 1141–1146.

    Google Scholar 

  31. R. I. Boţ, E. R. Csetnek and G. Wanka (2008), Regularity conditions via quasi-relative interior in convex programming, SIAM J. Optim. 19, 217–233.

    Google Scholar 

  32. R. I. Boţ, S. M. Grad and G. Wanka (2008), New regularity conditions for strong and total Fenchel-Lagrange duality in infinite-dimensional spaces, Nonliner Anal. 69, 323–336.

    Google Scholar 

  33. L. C. Ceng, B. S. Mordukhovich and J.-C. Yao (2010), Hybrid approximate proximal method with auxiliary variational inequality for vector optimization, J. Optim. Theory Appl. 146 (2010), 267–303.

    Google Scholar 

  34. C. R. Chen, S. J. Li and K. L. Teo (2009), Solution semicontinuity of parametric generalized vector equilibrium problems, J. Global Optim. 45, 309–318.

    Google Scholar 

  35. G. Y. Chen, X. X. Huang and X. Q. Yang (2005), Vector Optimization, Springer, Berlin.

    Google Scholar 

  36. T. D. Chuong, B. S. Mordukhovich and J.-C. Yao (2011), Hybrid approximate proximal algorithms for efficient solutions in vector optimization, J. Nonlinear Convex Anal. 12, 257–286.

    Google Scholar 

  37. S. Cobzaş (2013), Functional Analysis in Asymmetric Normed Spaces, Birkhüser, Basel, Switzerland.

    Google Scholar 

  38. H. W. Corley (1988), Optimality conditions for maximization of set-valued functions, J. Optim. Theory Appl. 58, 1–10.

    Google Scholar 

  39. G. P. Crespi, I. Ginchev and M. Rocca (2006), First-order optimality conditions in set-valued optimization, Math. Methods Oper. Res. 63, 87–106.

    Google Scholar 

  40. P. Daniele, S. Giuffré, G. Idone and A. Maugeri (2007), Infinite dimensional duality and applications, Math. Ann. 339, 221–239.

    Google Scholar 

  41. M. B. Donato, M. Milasi and C. Vitanza (2008), An existence result of a quasi-variational inequality associated to an equilibrium problem, J. Global Optim. 40, 87–97.

    Google Scholar 

  42. M. Durea, J. Dutta and C. Tammer (2010), Lagrange multipliers and ɛ-Pareto solutions in vector optimization with nonsolid cones in Banach spaces, J. Optim. Theory Appl. 145, 196–211.

    Google Scholar 

  43. M. Durea and R. Strugariu (2010), Necessary optimality conditions for weak sharp minima in set-valued optimization, Nonlinear Anal. 73, 2148–2157.

    Google Scholar 

  44. J. Dutta (2005), Optimality conditions for maximizing a locally Lipschitz function, Optimization 54, 377–389.

    Google Scholar 

  45. J. Dutta (2012), Strong KKT, second order conditions and non-solid cones in vector optimization, in Recent Developments in Vector Optimization, edited by Q. H. Ansari and J.-C. Yao, pp. 127–167, Springer, Berlin.

    Chapter  Google Scholar 

  46. M. Ehrgott (2005), Multicriteria Optimization, 2nd edition, Springer, Berlin.

    MATH  Google Scholar 

  47. G. Eichfelder (2014), Variable Ordering Structures in Vector Optimization, Springer, Berlin.

    Book  Google Scholar 

  48. G. Eichfelder and T. X. D. Ha (2013), Optimality conditions for vector optimization problems with variable ordering structures, Optimization 62, 1468–1476.

    Google Scholar 

  49. G. Eichfelder and R. Kasimbeyli (2013), Properly optimal elements in vector optimization with variable ordering structures, J. Global Optim. 60, 689–712.

    Google Scholar 

  50. B. El Abdoini and L. Thibault (1996), Optimality conditions for problems with set-valued objectives, J. Appl. Anal. 2, 183–201.

    Google Scholar 

  51. E.-A. Florea (2016), Coderivative necessary optimality conditions for sharp and robust efficiencies in vector optimization with variable ordering structure, Optimization 65 (2016), 1417–1435.

    Google Scholar 

  52. F. Flores-Bazán and E. Hernández (2013), Optimality conditions for a unified vector optimization problem with not necessarily preordering relations, J. Global Optim. 56, 299–315.

    Google Scholar 

  53. M. Fukushima and J.-S. Pang (2005), Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games, Comput. Management Sci. 1, 21–56.

    Google Scholar 

  54. C. Gerth (Tammer) and P. Weidner (1990), Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory Appl. 67, 297–320.

    Google Scholar 

  55. F. Giannessi (1980), Theorems of alternative, quadratic programs and complementarity problems, in Variational Inequalities and Complementarity Problems, edited by R. Cottle et al., pp. 151–186, Wiley, New York.

    Google Scholar 

  56. F. Giannessi (2005), Constrained Optimization and Image Space Analysis, Springer, London, United Kingdom.

    MATH  Google Scholar 

  57. A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu (2003), Variational Methods in Partially Ordered Spaces, Springer, New York.

    MATH  Google Scholar 

  58. V. V. Gorokhovik (1990), Convex and Nonsmooth Problems of Vector Optimization, Nauka i Tekhnika, Minsk, Belarus.

    Google Scholar 

  59. S.-M. Grad (2015), Vector Optimization and Monotone Operators via Convex Duality, Springer, Berlin.

    Book  Google Scholar 

  60. L. M. Graña Drummond and B. F. Svaiter (2005), A steepest descent method for vector optimization, J. Comput. Appl. Math. 175 (2005), 395–414.

    Google Scholar 

  61. A. Guerraggio and D. T. Luc (2006), Properly maximal points in product spaces, Math. Oper. Res. 31, 305–315.

    Google Scholar 

  62. C. Gutiérrez, L. Huerga, B. Jiménez and V. Novo (2013), Proper approximate solutions and ɛ-subdifferentials in vector optimization: basic properties and limit behaviour, Nonlinear Anal. 79, 52–67.

    Google Scholar 

  63. T. X. D. Ha (2005), Lagrange multipliers for set-valued problems associated with coderivatives, J. Math. Anal. Appl. 311, 647–663.

    Google Scholar 

  64. T. X. D. Ha (2005), Some variants of the Ekeland variational principle for a set-valued map, J. Optim. Theory Appl. 124, 187–206.

    Google Scholar 

  65. T. X. D. Ha (2012), Optimality conditions for various efficient solutions involving coderivatives: from set-valued optimization problems to set-valued equilibrium problems, Nonlinear Anal. 75, 1305–1323.

    Google Scholar 

  66. T. X. D. Ha (2012), The Fermat rule and Lagrange multiplier rule for various effective solutions to set-valued optimization problems expressed in terms of coderivatives, in Recent Developments in Vector Optimization, edited by Q. H. Ansari and J.-C. Yao, pp. 417–466, Springer, Berlin.

    Chapter  Google Scholar 

  67. N. Hadjisavvas (2005), Generalized convexity, generalized monotonicity and nonsmooth analysis, Handbook of Generalized Convexity and Generalized Monotonicity, edited by N. Hadjisavvas et al., pp. 465–499, Springer, New York.

    Google Scholar 

  68. A. H. Hamel, F. Heyde, A. Löhne, B. Rudloff and C. Schrage (2015), Set optimization–a rather short introduction, in Set Optimization and Applications–the State of the Art, edited by A. H. Hamel et al., pp. 65–141, Springer, Berlin.

    Chapter  Google Scholar 

  69. A. H. Hamel and C. Schrage (2014), Directional derivatives, subdifferentials and optimality conditions for set-valued convex functions, Pac. J. Optim. 10, 667–689.

    Google Scholar 

  70. E. Hernández, L. Rodríguez-Marín and M. Sama (2010), On solutions of set-valued optimization problems, Comput. Math. Appl. 65, 1401–1408.

    Google Scholar 

  71. J.-B. Hiriart-Urruty and Y. S. Ledyaev (1996), A note on the characterization of the global maxima of a (tangentially) convex function over a convex set, J. Convex Anal. 3, 55–61.

    Google Scholar 

  72. X. Hu and D. Ralph (2007), Using EPECs to model bilevel games in restructured electricity markets with locational prices, Oper. Res. 55, 809–827.

    Google Scholar 

  73. H. Huang (2008), The Lagrange multiplier rule for super efficiency in vector optimization, J. Math. Anal. Appl. 342, 503–513.

    Google Scholar 

  74. N. Q. Huy, B. S. Mordukhovich and J.-C. Yao (2008), Coderivatives of frontier and solution maps in parametric multiobjective optimization, Taiwanese J. Math. 12, 2083–2111.

    Google Scholar 

  75. J. Ide, E. Köbis, D. Kuroiwa, A. Schöbel and C. Tammer (2014), The relationships between multicriteria robustness concepts and set-valued optimization, Fixed Point Theory Appl. 83.

    Google Scholar 

  76. A. N. Iusem and V. Sosa (2010), On the proximal point method for equilibrium problems in Hilbert spaces, Optimization 59, 1259–1274.

    Google Scholar 

  77. J. Jahn (2004), Vector Optimization: Theory, Applications and Extensions, Springer, Berlin.

    Book  Google Scholar 

  78. J. Jahn and A. A. Khan (2003), Some calculus rules for contingent epiderivatives, Optimization 52, 113–125.

    Google Scholar 

  79. V. Jeyakumar and D. T. Luc (2008), Nonsmooth Vector Functions and Continuous Optimization, Springer, New York.

    MATH  Google Scholar 

  80. A. A. Khan, C. Tammer and C. Zălinescu (2015), Set-Valued Optimization. An Introduction with Applications, Springer, Berlin.

    MATH  Google Scholar 

  81. P. Q. Khanh and D. N. Quy (2011), On generalized Ekeland’s variational principle and equivalent formulations for set-valued mappings, J. Global Optim. 49 (2011), 381–396.

    Google Scholar 

  82. I. V. Konnov (2001), Combined Relaxation Methods for Variational Inequalities, Springer, Berlin.

    Book  Google Scholar 

  83. A. Y. Kruger (1985), Generalized differentials of nonsmooth functions and necessary conditions for an extremum, Siberian Math. J. 26, 370–379.

    Google Scholar 

  84. A. Y. Kruger and B. S. Mordukhovich (1980), Extremal points and the Euler equation in nonsmooth optimization, Dokl. Akad. Nauk BSSR 24, 684–687 (in Russian).

    Google Scholar 

  85. D. Kuroiwa (1998), The natural criteria in set-valued optimization, RIMS Kokyuroku 1031, 85–90.

    Google Scholar 

  86. A. G. Kusraev and S. S. Kutateladze (1995), Subdifferentials: Theory and Applications, Kluwer, Dordrecht, The Netherlands.

    Book  Google Scholar 

  87. G. Li, K. F. Ng and X. Y. Zheng (2007), Unified approach to some geometric results in variational analysis, J. Funct. Anal. 248 (2007), 317–343.

    Google Scholar 

  88. A. Löhne (2011), Vector Optimization with Infimum and Supremum, Springer, Berlin.

    Book  Google Scholar 

  89. D. T. Luc (1989), Theory of Vector Optimization, Springer, Berlin.

    Book  Google Scholar 

  90. G. Mastroeni (2003), Gap functions for equilibrium problems, J. Global Optim. 27, 411–426.

    Google Scholar 

  91. A. Maugeri (2001), Equilibrium problems and variational inequalities, in Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Methods, edited by F. Giannessi et al., pp. 187–205, Kluwer, Dordrecht, The Netherlands.

    MATH  Google Scholar 

  92. A. Maugeri and D. Puglisi (2014), A new necessary and sufficient condition for the strong duality and the infinite dimensional Lagrange multiplier rule, J. Math. Anal. Appl. 415, 661–676.

    Google Scholar 

  93. E. Miglierina, E. Molho and M. Rocca (2005), Well-posedness and scalarization in vector optimization, J. Optim. Theory Appl. 126, 391–409.

    Google Scholar 

  94. S. K. Mishra and V. Laha (2016), On Minty variational principle for nonsmooth vector optimization problems with approximate convexity, Optim. Lett. 10, 577–589.

    Google Scholar 

  95. B. S. Mordukhovich (1985), On necessary conditions for an extremum in nonsmooth optimization, Soviet Math. Dokl. 32, 215–220.

    Google Scholar 

  96. B. S. Mordukhovich (1988), Approximation Methods in Problems of Optimization and Control, Nauka, Moscow (in Russian).

    MATH  Google Scholar 

  97. B. S. Mordukhovich (2004), Equilibrium problems with equilibrium constraints via multiobjective optimization, Optim. Meth. Soft. 19, 479–492.

    Google Scholar 

  98. B. S. Mordukhovich (2006), Variational Analysis and Generalized Differentiation, I: Basic Theory, Springer, Berlin.

    Google Scholar 

  99. B. S. Mordukhovich (2006), Variational Analysis and Generalized Differentiation, II: Applications, Springer, Berlin.

    Google Scholar 

  100. B. S. Mordukhovich (2009), Methods of variational analysis in multiobjective optimization, Optimization 58, 413–430.

    Google Scholar 

  101. B. S. Mordukhovich (2009), Multiobjective optimization problems with equilibrium constraints, Math. Program. 117, 331–354.

    Google Scholar 

  102. B. S. Mordukhovich, N. M. Nam and N. D. Yen (2009), Subgradients of marginal functions in parametric mathematical programming, Math. Program. 116, 369–396.

    Google Scholar 

  103. B. S. Mordukhovich, J. V. Outrata and M. Černinka (2007), Equilibrium problems with complementarity constraints: case study with applications to oligopolistic markets, Optimization 56, 479–494.

    Google Scholar 

  104. B. S. Mordukhovich, B. Panicucci, M. Passacantando and M. Pappalardo (2012), Hybrid proximal methods for equilibrium problems, Optim. Lett. 6, 1535–1550.

    Google Scholar 

  105. B. S. Mordukhovich, J. S. Treiman and Q. J. Zhu (2003), An extended extremal principle with applications to multiobjective optimization, SIAM J. Optim. 14, 359–379.

    Google Scholar 

  106. B. S. Mordukhovich and B. Wang (2002), Necessary optimality and suboptimality conditions in nondifferentiable programming via variational principles, SIAM J. Control Optim. 41, 623–640.

    Google Scholar 

  107. B. S. Mordukhovich and B. Wang (2008) Generalized differentiation of parameter-dependent sets and mappings, Optimization 57, 17–40.

    Google Scholar 

  108. N. Nadezhkina and W. Takahashi (2006), Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim. 16, 1230–1241.

    Google Scholar 

  109. A. Nagurney (1999), Network Economics: A Variational Inequality Approach, 2nd edition, Kluwer, Dordrecht, The Netherlands.

    Book  Google Scholar 

  110. W. Oettli (1982), Optimality conditions for programming problems involving multivalued mappings, in Modern Applied Mathematics, edited by B. H. Korte, pp. 195–226, North-Holland, Amsterdam.

    Google Scholar 

  111. J. V. Outrata, F. C. Ferris, M. Červinka and M. Outrata (2016), On Cournot-Nash-Walras equilibria and their computation, Set-Valued Var. Anal 24, 387–402.

    Google Scholar 

  112. M. Oveisiha and J. Zafarani (2012), Vector optimization problem and generalized convexity, J. Global Optim. 52, 29–43.

    Google Scholar 

  113. D. Pallaschke and S. Rolewicz (1998), Foundations of Mathematical Optimization: Convex Analysis without Linearity, Kluwer, Dordrecht, The Netherlands.

    MATH  Google Scholar 

  114. N. Popovici (2007), Explicitly quasiconvex set-valued optimization, J. Global Optim. 38, 103–118.

    Google Scholar 

  115. J.-H. Qiu (2014), A pre-order principle and set-valued Ekeland variational principle, J. Math. Anal. Appl. 419, 904–937.

    Google Scholar 

  116. M. Soleimani-damaneh (2010), Nonsmooth optimization using Mordukhovich’s subdifferential, SIAM J. Control Optim. 48, 3403–3432.

    Google Scholar 

  117. A. Soubeyran (2009), Variational rationality, a theory of individual stability and change: worthwhile and ambidextry behaviors, mimeo, GREQAM, Aix-Marseille University, France.

    Google Scholar 

  118. A. Taa (2011), On subdifferential calculus for set-valued mappings and optimality conditions, Nonlinear Anal. 74, 7312–7324.

    Google Scholar 

  119. S. Tagawa (1978), Optimierung mit Mengenwertigen Abbildugen, Ph.D. dissertation, University of Mannheim, Germany (in German).

    MATH  Google Scholar 

  120. N. V. Tuyen (2016), Some characterizations of solution sets of vector optimization problems with generalized order, Acta Math. Vietnamica 41, 677–694.

    Google Scholar 

  121. N. V. Tuyen and N. D. Yen (2012), On the concept of generalized order optimality, Nonlinear Anal. 75, 1592–1601.

    Google Scholar 

  122. D. E. Ward and G. M. Lee (2002), On relations between vector optimization problems and vector variational inequalities, J. Optim. Theory Appl. 113 (2002), 583–596.

    Google Scholar 

  123. X. Xue and Y. Zhang (2015), Coderivatives of gap function for Minty vector variational inequality, J. Inequal. Appl. 2015:285.

    Article  MathSciNet  Google Scholar 

  124. P. L. Yu (1974), Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives, J. Optim. Theory Appl. 14, 319–377.

    Google Scholar 

  125. A. Zaffaroni, Degrees of efficiency and degrees of minimality, SIAM J. Control Optim. 42, 1071–1086.

    Google Scholar 

  126. C. Zălinescu (2015), On the use of the quasi-relative interior in optimization, Optimization 64, 1795–1823.

    Google Scholar 

  127. X. Y. Zheng and K. F. Ng (2005), The Fermat rule for multifunctions in Banach spaces, Math. Program. 104, 69–90.

    Google Scholar 

  128. X. Y. Zheng and K. F. Ng (2006), The Lagrange multiplier rule for multifunctions in Banach spaces, SIAM J. Optim. 17, 1154–1175.

    Google Scholar 

  129. S. K. Zhu (2016), Weak sharp efficiency in multiobjective optimization, Optim. Lett. 10, 1287–1301.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mordukhovich, B.S. (2018). Variational Analysis in Set Optimization. In: Variational Analysis and Applications. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-92775-6_9

Download citation

Publish with us

Policies and ethics